平面向量
a
b
的夾角為60°,
a
=(1,0),|
b
|=2,則|2
a
-
b
|=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:求得向量a的模,運(yùn)用向量的數(shù)量積的坐標(biāo)表示和向量的平方即為模的平方,計(jì)算即可得到.
解答: 解:
a
=(1,0),即|
a
|=1,
a
b
=|
a
|•|
b
|•cos60°=1×
1
2
=1,
則|2
a
-
b
|=
(2
a
-
b
)2
=
4
a
2
-4
a
b
+
b
2

=
4-4+4
=2,
故答案為:2.
點(diǎn)評(píng):本題考查向量的數(shù)量積的坐標(biāo)表示和性質(zhì),考查向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩直線2x-y-1=0和2x+y-7=0的交點(diǎn),且與坐標(biāo)軸圍成三角形,面積為4的直線方程是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

商場(chǎng)銷售的某種飲品每件成本為20元,售價(jià)36元.現(xiàn)廠家為了提高收益,對(duì)該飲品進(jìn)行促銷,具體規(guī)則如下:顧客每購(gòu)買一件飲品,當(dāng)即從放有編號(hào)分別為1、2、3、4、5、6的六個(gè)規(guī)格的小球的密封箱中連續(xù)有放回地摸取三次,若三次取出的小球編號(hào)相同,則獲一等獎(jiǎng);若三次取出小球的編號(hào)是連號(hào)(不考慮順序),則獲二等獎(jiǎng);其它情況無(wú)獎(jiǎng).
(1)求某顧客購(gòu)買1件該飲品,獲得獎(jiǎng)勵(lì)的概率;
(2)若獎(jiǎng)勵(lì)為返還現(xiàn)金,顧客獲一次一等獎(jiǎng),獎(jiǎng)金數(shù)是x元,若獲一次二等獎(jiǎng),獎(jiǎng)金是一等獎(jiǎng)獎(jiǎng)金的一半,統(tǒng)計(jì)表明:每天的銷量y(件)與一等獎(jiǎng)的獎(jiǎng)金額x(元)的關(guān)系式y(tǒng)=
x
4
+24.問(wèn):x設(shè)定為多少最佳?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y-1≥0
x≤3
則z=3x-y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將正弦函數(shù)f1(x)=sinx與余弦函數(shù)f2(x)=cosx線性組合成函數(shù)f(x)=Af1(x)+Bf2(x) (A,B是常數(shù),x∈R),函數(shù)f(x)的圖象稱(A,B)曲線.
(1)若(A,B)曲線與(C,D)曲線重合,求證:A=C,B=D;
(2)已知點(diǎn)P1(x1,y1)與點(diǎn)P2(x2,y2)且x1-x2≠kπ(k∈z),求證:經(jīng)過(guò)點(diǎn)P1與點(diǎn)P2的(A,B)曲線有且僅有一條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將長(zhǎng)為12米的鋼筋截成12段,做成底面為正方形的長(zhǎng)方體水箱骨架,設(shè)水箱的高h(yuǎn),底面邊長(zhǎng)x,水箱的表面積(各個(gè)面的面積之和)為S.
(1)將S表示成x的函數(shù);
(2)根據(jù)實(shí)際需要,底面邊長(zhǎng)不小于0.25,不大于1.25,當(dāng)?shù)酌孢呴L(zhǎng)為多少時(shí),這個(gè)水箱表面積最小值,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等腰三角形ABC中,AB=AC=1,∠BAC=90°,點(diǎn)E為斜邊BC的中點(diǎn),點(diǎn)M在線段AB上運(yùn)動(dòng),則
ME
MC
的取值范圍是( 。
A、[
7
16
,
1
2
]
B、[
7
16
,1]
C、[
1
2
,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(
1
x
-
x
)6
的展開(kāi)式中,常數(shù)項(xiàng)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若l<x<4,設(shè) a=x
1
2
,b=x
2
3
,c=ln
x
,則a,b,c從小到大的排列為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案