方程x2+
2
x-1=0的解可視為函數(shù)y=x+
2
的圖象與函數(shù)y=
1
x
的圖象交點(diǎn)的橫坐標(biāo),若x4+ax-4=0的各個(gè)實(shí)根x1,x2,…,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi,
4
xi
)(i=1,2,…,k)均在直線y=x的同側(cè),則實(shí)數(shù)a的取值范圍是(  )
A、R
B、∅
C、(-6,6)
D、(-∞,-6)∪(6,+∞)
考點(diǎn):函數(shù)與方程的綜合運(yùn)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:原方程等價(jià)于x3+a=
4
x
,分別作出y=x3+a與y=
4
x
的圖象:分a>0與a<0討論,數(shù)形結(jié)合即可.
解答: 解:方程的根顯然不為0,原方程x4+ax-4=0等價(jià)于方程x3+a=
4
x
,
原方程的實(shí)根是曲線y=x3+a與曲線y=
4
x
的交點(diǎn)的橫坐標(biāo);
曲線y=x3+a是由曲線y=x3向上或向下平移|a|個(gè)單位而得到的.
若交點(diǎn)(xi,
4
xi
)(i=1,2,…,k)均在直線y=x的同側(cè),
則直線y=x與y=
4
x
的交點(diǎn)為:(-2,-2),(2,2);
如下圖所示:

所以結(jié)合圖象可得:
a>0
x3+a>-2
x≥-2
,
a<0
x3+a<2
x≤2
,
解得a>6或a<-6,
即實(shí)數(shù)a的取值范圍是(-∞,-6)∪(6,∞),
故選D.
點(diǎn)評(píng):本題考查函數(shù)與方程的綜合運(yùn)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.?dāng)?shù)列{bn}滿足b1=1,bn+1=bn+2an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=an•bn,求{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者,從符合條件的200名志愿者中隨機(jī)抽取60名志愿者,其中年齡分組區(qū)間是:[20,25),[25,30),[30,35),[35,40),[40,45].
(1)求圖中x的值并根據(jù)頻率分布直方圖估計(jì)這200名志愿者中年齡在[30,35)歲的人數(shù);
(2)在抽出的60名志愿者中按年齡在區(qū)間[20,35)和[35,45]采用分層抽樣的方法抽取5名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@5名中采用簡(jiǎn)單隨機(jī)抽樣方法選取2名志愿者擔(dān)任主要負(fù)責(zé)人,求所選兩人中至少有一個(gè)年齡不低于35歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a0+a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“同域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“同城區(qū)間”.給出下列四個(gè)函數(shù):
①f(x)=cos
π
2
x;②f(x)=x2-1;③f(x)=|x2-1|;④f(x)=log2(x-1).
存在“同域區(qū)間”的“同域函數(shù)”的序號(hào)是
 
(請(qǐng)寫(xiě)出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(x)+f(x+2)=0,且f(4-x)=f(x).現(xiàn)有以下三種敘述:
①8是函數(shù)f(x)的一個(gè)周期;②f(x)的圖象關(guān)于直線x=2對(duì)稱;③f(x)是偶函數(shù)
其中正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩人分別進(jìn)行3次和n次射擊,甲乙每次擊中目標(biāo)的概率分別為
1
2
和p,記甲乙擊中目標(biāo)的次數(shù)分別為X和Y,且E(Y)=2,D(Y)=
2
3

(1)求X的概率分布及數(shù)學(xué)期望E(X)
(2)求乙至多擊中目標(biāo)2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,an.Sn滿足(t-1)Sn=t(an-2)(t為常數(shù),t≠0且t≠1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-an)•log3(1-Sn),當(dāng)t=
1
3
時(shí),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={y|y=lnx,x>1},集合B={x|y=
4-x2
},則A∩∁RB=(  )
A、∅
B、(0,2]
C、(2,+∞)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案