分析 (1)極坐標(biāo)方程兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)于關(guān)系得出直角坐標(biāo)方程;
(2)把直線l的參數(shù)方程代入曲線C的方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義化簡(jiǎn)即可得出結(jié)論.
解答 解:(1)∵ρ-ρcos2θ-4cosθ=0,∴ρ2-ρ2cos2θ-4ρcosθ=0,
∴x2+y2-x2-4x=0,即y2=4x.
(2)把為$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$為參數(shù),θ為傾斜角)代入y2=4x得:
sin2θ•t2-4cosθ•t-4a=0,
∴t1+t2=$\frac{4cosθ}{si{n}^{2}θ}$,t1t2=-$\frac{4a}{si{n}^{2}θ}$,
∴$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$=$\frac{1}{{{t}_{1}}^{2}}+\frac{1}{{{t}_{2}}^{2}}$=$\frac{{{t}_{1}}^{2}+{{t}_{2}}^{2}}{{{t}_{1}}^{2}{{t}_{2}}^{2}}$=$\frac{({t}_{1}+{t}_{2})^{2}-2{t}_{1}{t}_{2}}{{{t}_{1}}^{2}{{t}_{2}}^{2}}$=$\frac{16co{s}^{2}θ+8asi{n}^{2}θ}{16{a}^{2}}$,
∴當(dāng)a=2時(shí),$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$為定值$\frac{1}{4}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程的幾何意義,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,+∞) | B. | (2,4) | C. | (0,4) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\frac{1}{24}+2kπ,\frac{5}{24}+2kπ)$,(k∈Z) | B. | $(-\frac{1}{12}+\frac{k}{2},\frac{5}{12}+\frac{k}{2})$,(k∈Z) | ||
C. | $(-\frac{1}{12}+2kπ,\frac{1}{3}+2kπ)$,(k∈Z) | D. | $(-\frac{1}{24}+\frac{k}{2},\frac{5}{24}+\frac{k}{2})$,(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | -3 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com