15.已知集合A={0,1,2,3,4},B={x|(x+5)(x-m)<0},m∈Z,若A∩B有三個元素,則m的值為( 。
A.-2B.2C.-3D.3

分析 根據(jù)集合元素之間的關系即可求出答案

解答 解:集合A={0,1,2,3,4},
當m≤-5時,集合B為空集,顯然不合題意,
當m>-5時,B={x|(x+5)(x-m)<0}=(-5,m),
因為A∩B有三個元素,
所以m=3,
故選:D

點評 本題考查的知識點是集合關系中的參數(shù)取值問題,利用集合元素的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知直線l在直角坐標系xOy中的參數(shù)方程為$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$為參數(shù),θ為傾斜角),以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,在極坐標系中,曲線的方程為ρ-ρcos2θ-4cosθ=0.
(1)寫出曲線C的直角坐標方程;
(2)點Q(a,0),若直線l與曲線C交于A、B兩點,求使$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$為定值的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,a=2,b=3,c=4,則其最大內角的余弦值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示,在正方體AC1中,AB=2,A1C1∩B1D1=E,直線AC與直線DE所成的角為α,直線DE與平面BCC1B1所成的角為β,則cos(α-β)=( 。
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知3sin2θ=4tanθ,且θ≠kπ(k∈Z),則cos2θ等于(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=ln(x+1)+$\frac{1}{{\sqrt{2-{x^2}}}}$的定義域是(-1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在平面內,$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}=\overrightarrow{CA}•\overrightarrow{CB}=6$,動點P,M滿足$|\overrightarrow{AP}|=2$,$\overrightarrow{PM}=\overrightarrow{MC}$,則$|\overrightarrow{BM}{|^2}$的最大值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|lgx≤0},B={x|x2<1},則(∁RA)∩B=( 。
A.(0,1)B.(0,1]C.(-1,1)D.(-1,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知復數(shù)z滿足(1+i)•z=2-i,則復數(shù)z的共軛復數(shù)為( 。
A.$\frac{1}{2}-\frac{3}{2}i$B.$\frac{1}{2}+\frac{3}{2}i$C.1+3iD.1-3i

查看答案和解析>>

同步練習冊答案