2.已知M是平行四邊形ABCD的對角線的交點(diǎn),P為平面ABCD內(nèi)任意一點(diǎn),則$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$等于(  )
A.4$\overrightarrow{PM}$B.3$\overrightarrow{PM}$C.2$\overrightarrow{PM}$D.$\overrightarrow{PM}$

分析 根據(jù)向量的三角形的法則和平行四邊形的性質(zhì)即可求出答案

解答 解:∵M(jìn)是平行四邊形ABCD的對角線的交點(diǎn),P為平面ABCD內(nèi)任意一點(diǎn),
∴$\overrightarrow{PA}$=$\overrightarrow{PM}$+$\overrightarrow{MA}$,$\overrightarrow{PB}$=$\overrightarrow{PM}$+$\overrightarrow{MB}$,$\overrightarrow{PC}$=$\overrightarrow{PM}$+$\overrightarrow{MC}$,$\overrightarrow{PD}$=$\overrightarrow{PM}$+$\overrightarrow{MD}$,
∵M(jìn)是平行四邊形ABCD對角線的交點(diǎn),
∴$\overrightarrow{MA}$=-$\overrightarrow{MC}$,$\overrightarrow{MB}$=-$\overrightarrow{MD}$,
∴$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{PM}$+$\overrightarrow{MA}$+$\overrightarrow{PM}$+$\overrightarrow{MB}$+$\overrightarrow{PM}$+$\overrightarrow{MC}$+$\overrightarrow{PM}$+$\overrightarrow{MD}$=4$\overrightarrow{PM}$,
故選:A

點(diǎn)評 本題考查向量的加法運(yùn)算,將向量轉(zhuǎn)化為兩個向量的和,然后抵消掉相反向量是解題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.方程$\sqrt{{{(x+5)}^2}+{y^2}}-\sqrt{{{(x-5)}^2}+{y^2}}=6$的化簡結(jié)果為( 。
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{16}=1$C.$\frac{x^2}{9}-\frac{y^2}{16}=1(x>0)$D.$\frac{x^2}{16}-\frac{y^2}{9}=1(x>0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=-$\frac{2+a{x}^{2}}{{e}^{x}}$(a>0)在區(qū)間[0,1]上有極值,且函數(shù)f(x)在區(qū)間[0,1]上的最小值不小于-$\frac{7}{e}$,則a的取值范圍是( 。
A.(2,5]B.(2,+∞)C.(1,4}D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)$A(\sqrt{3},0)$和點(diǎn)B(0,2),斜率為k(k≠0)的直線經(jīng)過點(diǎn)P(2,0)且交E于M,N兩點(diǎn).
(1)求橢圓E的方程;
(2)當(dāng)△AOM與△AON面積比值為7,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(x-1)=f(3-x)且方程f(x)=2x有兩個相等實(shí)數(shù)根
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出符合條件的所有m,n的值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-(a+1)x+b.
(1)若f(x)<0的解集為(-1,3),求a,b的值;
(2)當(dāng)a=1時,若對任意x∈R,f(x)≥0恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)b=a時,解關(guān)于x的不等式f(x)<0(結(jié)果用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在直三棱柱中ABC-A1B1C1中,二面角A-A1B-C是直二面角,AB=BC═2,點(diǎn)M是棱CC1的中點(diǎn),三棱錐M-BCA1的體積為1.
(I )證明:BC丄平面ABA1
(II)求平面ABC與平面BCA1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,-1).若向量$\overrightarrow{c}$滿足($\overrightarrow{c}+\overrightarrow{a}$)∥$\overrightarrow$,$\overrightarrow{c}$⊥($\overrightarrow{a}+\overrightarrow$),則$\overrightarrow{c}$=(3,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若cos($\frac{π}{6}$-θ)=$\frac{{\sqrt{3}}}{3}$,則cos($\frac{5π}{6}$+θ)-sin2(θ-$\frac{π}{6}$)=-$\frac{\sqrt{3}+2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案