已知
y≥x
x+y≤2
x≥a
,且z=2x+y的最大值是最小值的3倍,則a等于( 。
A、
1
3
或3
B、
1
3
C、
2
5
或2
D、
2
5
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=2x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最值即可.
解答:精英家教網(wǎng)解:先根據(jù)約束條件畫出可行域,
設(shè)z=2x+y,
將z的值轉(zhuǎn)化為直線z=2x+y在y軸上的截距,
當(dāng)a>1時,當(dāng)直線z=2x+y經(jīng)過點(diǎn)A(1,1)時,
z最小,z=2x+y的最小值是:3.
當(dāng)直線z=2x+y經(jīng)過點(diǎn)B(a,a)時,z最大,
最大值為:2a+a=9,?a=3.
當(dāng)0<a<1時,當(dāng)直線z=2x+y經(jīng)過點(diǎn)A(1,1)時,
z最大,z=2x+y的最大值是:3.
當(dāng)直線z=2x+y經(jīng)過點(diǎn)B(a,a)時,z最小,
最小值為:2a+a=1,?a=
1
3
精英家教網(wǎng)
故a=
1
3
或3.
故選A.
點(diǎn)評:本題只是直接考查線性規(guī)劃問題,是一道較為簡單的送分題.近年來高考線性規(guī)劃問題高考數(shù)學(xué)考試的熱點(diǎn),數(shù)形結(jié)合是數(shù)學(xué)思想的重要手段之一,是連接代數(shù)和幾何的重要方法.隨著要求數(shù)學(xué)知識從書本到實(shí)際生活的呼聲不斷升高,線性規(guī)劃這一類新型數(shù)學(xué)應(yīng)用問題要引起重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形OABC中,已知過點(diǎn)C的直線與線段OA,OB分別相交于點(diǎn)M,N.若
OM
=x
OA
ON
=y
OB

(1)求證:x與y的關(guān)系為y=
x
x+1
;
(2)設(shè)f(x)=
x
x+1
,定義函數(shù)F(x)=
1
f(x)
-1(0<x≤1)
,點(diǎn)列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
1
2
的等比數(shù)列,O為原點(diǎn),令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點(diǎn)Q(1,m),使得
OP
OQ
?若存在,請求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實(shí)數(shù)解時,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=2x-y,變量x,y滿足約束條件
y≤x
x+y≥1
x≤2
,則z的最大值為( 。
A、0B、5C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足約束條件
y≤x
x+y≤2
y≥0
,若點(diǎn)P的坐標(biāo)為(
3
2
,-2),點(diǎn)Q為該區(qū)域內(nèi)一點(diǎn),則|PQ|長的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a-x
x
,其中a為常數(shù),且a>0.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=
1
2
x+1
垂直,求a的值;
(2)若函數(shù)f(x)在區(qū)間[1,2]上的最小值為
1
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x|
x
x-2
<0},N={y|y=2x+1}
,則M∩N=( 。

查看答案和解析>>

同步練習(xí)冊答案