6.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a2=2且Sn+2-3Sn+1+2Sn+an=0,(n∈N*),記Tn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n},(n∈{N^*})$,若(n+6)λ≥Tn對(duì)n∈N*恒成立,則λ的最小值為$\frac{1}{6}$.

分析 推導(dǎo)出Sn+2-3Sn+1+2Sn+an=an+2-2an+1+an=0,從an+2-an+1=an+1-an,進(jìn)而{an}是首項(xiàng)為1,公差為2-1=1的等差數(shù)列,由此得到$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),由此利用裂項(xiàng)求和法能求出λ的最小值.

解答 解:∵數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a2=2且Sn+2-3Sn+1+2Sn+an=0,(n∈N*),
∴Sn+2-3Sn+1+2Sn+an
=Sn+2-Sn+1-2(Sn+1-Sn)+an
=an+2-2an+1+an=0,
∴an+2-an+1=an+1-an,
∴{an}是首項(xiàng)為1,公差為2-1=1的等差數(shù)列,
∴an=1+(n-1)×1=n,${S}_{n}=\frac{n(n+1)}{2}$,
∴$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),
∴Tn=2($1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$)=$\frac{2n}{n+1}$,
∵(n+6)λ≥Tn對(duì)n∈N*恒成立,
∴$λ≥\frac{2n}{(n+1)(n+6)}=\frac{2}{n+\frac{6}{n}+7}$,
∵n=2或n=3時(shí),$\frac{2}{n+\frac{6}{n}+7}$有最大值$\frac{1}{6}$,∴$λ≥\frac{1}{6}$,
∴λ的最小值為$\frac{1}{6}$.
故答案為:$\frac{1}{6}$.

點(diǎn)評(píng) 裂項(xiàng)相減法是最難把握的求和法之一,其原因是有時(shí)很驗(yàn)證找到裂項(xiàng)的方向,突破這一難點(diǎn)的方程是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見(jiàn)的裂項(xiàng)技巧,要注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=ex,g(x)=$\frac{1}{2}$x2+x+1,則與f(x),g(x)的圖象均相切的直線方程是y=x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\frac{1}{2}sin2x+{sin^2}$x,x∈R的遞減區(qū)間為( 。
A.$[{kπ-\frac{π}{8},kπ+\frac{π}{8}}],k∈Z$B.$[{\frac{kπ}{2}-\frac{π}{8},\frac{kπ}{2}+\frac{π}{8}}],k∈Z$
C.$[{kπ+\frac{3π}{8},kπ+\frac{7π}{8}}],k∈Z$D.$[{\frac{kπ}{2}+\frac{3π}{8},\frac{kπ}{2}+\frac{7π}{8}}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$a=ln\frac{1}{2012}-\frac{1}{2012},b=ln\frac{1}{2013}-\frac{1}{2013},c=ln\frac{1}{2014}-\frac{1}{2014}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一袋中裝有4個(gè)白球,2個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)3次停止,設(shè)停止時(shí),取球次數(shù)為隨機(jī)變量X,則P(X=5)=( 。
A.$\frac{8}{27}$B.$\frac{4}{27}$C.$\frac{8}{81}$D.$\frac{16}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x+a|+|x+2|(a∈R).
(1)當(dāng)a=-1時(shí),求不等式f(x)≥5的解集;
(2)若f(x)≥|x-2|的解集包含[-4,-2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)
(1)若直線x-y-2=0過(guò)拋物線C的焦點(diǎn),求拋物線C的方程,并求出準(zhǔn)線方程;
(2)設(shè)p=2,A,B是C上異于坐標(biāo)原點(diǎn)O的兩個(gè)動(dòng)點(diǎn),滿足OA⊥OB,△ABO的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.某人打靶時(shí)連續(xù)射擊兩次,每次中靶的概率都是0.7,則他至少有一次中靶的概率為0.91.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合P={x|x2-3x-4>0},Q={x|2x-5>0},則P∩Q等于( 。
A.B.{x|x>$\frac{5}{2}$}C.{x|x>4}D.{x|$\frac{5}{2}$<x<4}

查看答案和解析>>

同步練習(xí)冊(cè)答案