1.一袋中裝有4個(gè)白球,2個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)3次停止,設(shè)停止時(shí),取球次數(shù)為隨機(jī)變量X,則P(X=5)=( 。
A.$\frac{8}{27}$B.$\frac{4}{27}$C.$\frac{8}{81}$D.$\frac{16}{81}$

分析 每次取到紅球的概率為$\frac{2}{6}$=$\frac{1}{3}$,X=5是指前4次取到兩個(gè)紅球,第5次取到紅球,由此能求出P(X=5).

解答 解:一袋中裝有4個(gè)白球,2個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,
每次取到紅球的概率為$\frac{2}{6}$=$\frac{1}{3}$,
直到紅球出現(xiàn)3次停止,設(shè)停止時(shí),取球次數(shù)為隨機(jī)變量X,
則X=5是指前4次取到兩個(gè)紅球,第5次取到紅球,
∴P(X=5)=${C}_{4}^{2}(\frac{1}{3})^{2}(\frac{2}{3})^{2}(\frac{1}{3})$=$\frac{8}{81}$.
故選:C.

點(diǎn)評(píng) 本題考查概率的求法,考查n次獨(dú)立試驗(yàn)中事件A恰好發(fā)生k次的概率計(jì)算公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.集合{a,b,c}共有8個(gè)子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓M:(x-1)2+y2=$\frac{3}{8}$,橢圓C:$\frac{{x}^{2}}{3}$+y2=1,若直線l與橢圓交于A,B兩點(diǎn),與圓M相切于點(diǎn)P,且P為AB的中點(diǎn),則這樣的直線l有( 。
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式|x-1|+|x+3|≥6的解集是(-∞,-4]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知M點(diǎn)的極坐標(biāo)為$(-2,-\frac{π}{6})$,則M點(diǎn)關(guān)于直線$θ=\frac{π}{2}$的對(duì)稱點(diǎn)坐標(biāo)為( 。
A.$(2,\frac{π}{6})$B.$(2,-\frac{π}{6})$C.$(-2,\frac{π}{6})$D.$(-2,\frac{11π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a2=2且Sn+2-3Sn+1+2Sn+an=0,(n∈N*),記Tn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n},(n∈{N^*})$,若(n+6)λ≥Tn對(duì)n∈N*恒成立,則λ的最小值為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)P(x,y)到定點(diǎn)F(0,2)的距離與它到y(tǒng)=-1距離之差為1,
(1)求點(diǎn)P的軌跡C
(2)點(diǎn)A(3,1),P在曲線C上,求|PA|+|PF|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.${∫}_{-1}^{1}$(3x2+2x+1)dx=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知復(fù)數(shù)(a2-1)+(a+1)i(其中a∈R,i為虛數(shù)單位)是純虛數(shù).
(1)求實(shí)數(shù)a的值;
(2)若復(fù)數(shù)z=$\frac{a+\sqrt{3}i}{ai}$,求|z|.

查看答案和解析>>

同步練習(xí)冊(cè)答案