如圖,軸截面為邊長(zhǎng)為等邊三角形的圓錐,過(guò)底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線(xiàn)的曲線(xiàn)為橢圓,則此橢圓的離心率為( 。
A.  B.C.D.
C

試題分析:根據(jù)題意,由于軸截面為邊長(zhǎng)為等邊三角形的圓錐,過(guò)底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,那么可知橢圓的長(zhǎng)軸長(zhǎng)為8,那么短軸長(zhǎng)為,那么結(jié)合橢圓的性質(zhì)可知其離心率為,故選C.
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)截面圖形的特征來(lái)得到橢圓中a,b的值,進(jìn)而求解離心率,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線(xiàn)的左焦點(diǎn),點(diǎn)是該雙曲線(xiàn)的右頂點(diǎn),過(guò)且垂直于軸的直線(xiàn)與雙曲線(xiàn)交于、兩點(diǎn),若是銳角三角形,則該雙曲線(xiàn)的離心率的取值范圍是(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線(xiàn)所截得的線(xiàn)段的長(zhǎng)為8,求直線(xiàn)的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線(xiàn)的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線(xiàn)與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓的兩個(gè)焦點(diǎn)與它的短軸的兩個(gè)端點(diǎn)是一個(gè)正方形的四個(gè)頂點(diǎn),則橢圓的離心率為         .    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點(diǎn),直線(xiàn):x=-將線(xiàn)段F1F2分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的中點(diǎn)M在直線(xiàn)l上,線(xiàn)段AB的中垂線(xiàn)與C交于P,Q兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn)M,使以PQ為直徑的圓經(jīng)過(guò)點(diǎn)F2,若存在,求出M點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)命題p:函數(shù)上是增函數(shù);命題q:方程有兩個(gè)不相等的負(fù)實(shí)數(shù)根。求使得pq是真命題的實(shí)數(shù)對(duì)為坐標(biāo)的點(diǎn)的軌跡圖形及其面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)拋物線(xiàn)的焦點(diǎn)作直線(xiàn)交拋物線(xiàn)于兩點(diǎn),若線(xiàn)段中點(diǎn)的橫坐標(biāo)為3,則等于___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以雙曲線(xiàn)的離心率為首項(xiàng),以函數(shù)的零點(diǎn)為公比的等比數(shù)列的前項(xiàng)的和
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案