設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線(xiàn)的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線(xiàn)與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
(1)當(dāng)m=0時(shí),方程表示兩直線(xiàn),方程為;當(dāng)時(shí), 方程表示的是圓,當(dāng)時(shí),方程表示的是橢圓;(2)存在圓滿(mǎn)足要求(3) 當(dāng)時(shí)|A1B1|取得最大值,最大值為1.

試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010429082433.png" style="vertical-align:middle;" />,,,
所以,   即.
當(dāng)m=0時(shí),方程表示兩直線(xiàn),方程為;
當(dāng)時(shí), 方程表示的是圓
當(dāng)時(shí),方程表示的是橢圓;
(2).當(dāng)時(shí), 軌跡E的方程為,設(shè)圓心在原點(diǎn)的圓的一條切線(xiàn)為,解方程組,即,
要使切線(xiàn)與軌跡E恒有兩個(gè)交點(diǎn)A,B,
則使△=,
,即,    且
,
要使,  需使,即,
所以, 即, 即恒成立.
所以又因?yàn)橹本(xiàn)為圓心在原點(diǎn)的圓的一條切線(xiàn),
所以圓的半徑為,, 所求的圓為.
當(dāng)切線(xiàn)的斜率不存在時(shí),切線(xiàn)為,與交于點(diǎn)也滿(mǎn)足.
綜上, 存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.
(3)當(dāng)時(shí),軌跡E的方程為,設(shè)直線(xiàn)的方程為,因?yàn)橹本(xiàn)與圓C:(1<R<2)相切于A1, 由(2)知, 即   ①,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010429160280.png" style="vertical-align:middle;" />與軌跡E只有一個(gè)公共點(diǎn)B1,
由(2)知,
有唯一解
則△=,   即,    ②
由①②得,  此時(shí)A,B重合為B1(x1,y1)點(diǎn),
 中,所以,,
B1(x1,y1)點(diǎn)在橢圓上,所以,所以,
在直角三角形OA1B1中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010430439648.png" style="vertical-align:middle;" />當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,即
當(dāng)時(shí)|A1B1|取得最大值,最大值為1.
點(diǎn)評(píng):取不同值時(shí)代表不同的曲線(xiàn),可一是直線(xiàn),圓,橢圓,雙曲線(xiàn);
直線(xiàn)與橢圓相交問(wèn)題常用的思路:直線(xiàn)方程與橢圓方程聯(lián)立,整理為x的二次方程,利用根與系數(shù)的關(guān)系,將所求問(wèn)題轉(zhuǎn)化到兩根來(lái)表示,本題第二問(wèn)第三問(wèn)對(duì)學(xué)生而言難度較大
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)與橢圓有相同的焦點(diǎn),點(diǎn)、分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過(guò)點(diǎn)引圓的切線(xiàn),求此切線(xiàn)的方程;
(3)設(shè)為直線(xiàn)上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已經(jīng)雙曲線(xiàn)x-my=m(m>0)的一條漸近線(xiàn)與直線(xiàn)2x-y+3=0垂直,則該雙曲線(xiàn)的準(zhǔn)線(xiàn)方程為
A.x=B.x=C.x=D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線(xiàn)=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線(xiàn)AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線(xiàn)的右焦點(diǎn),直線(xiàn)l過(guò)點(diǎn)F且與雙曲線(xiàn)的右支交于不同的兩點(diǎn)P、Q,點(diǎn)M為線(xiàn)段PQ的中點(diǎn).若點(diǎn)M在直線(xiàn)x=-2上的射影為N,滿(mǎn)足·=0,且||=10,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與雙曲線(xiàn)有相同的焦點(diǎn),若cam的等比中項(xiàng),n2是2m2c2的等差中項(xiàng),則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若。
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,軸截面為邊長(zhǎng)為等邊三角形的圓錐,過(guò)底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線(xiàn)的曲線(xiàn)為橢圓,則此橢圓的離心率為( 。
A.  B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)P是曲線(xiàn)C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線(xiàn)C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過(guò)P作斜率為的直線(xiàn)交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過(guò)點(diǎn)Q且與PQ垂直的直線(xiàn)與C交于另一點(diǎn)N,問(wèn)是否存在實(shí)數(shù)k,使得直線(xiàn)MN與曲線(xiàn)C
相切?若存在,求出k的值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線(xiàn)段所成的比為2,求線(xiàn)段AB所在直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案