【題目】如圖,在直四棱柱中,底面為等腰梯形,.

(1)證明:

(2)設是線段上的動點,是否存在這樣的點,使得二面角的余弦值為,如果存在,求出的長;如果不存在,請說明理由.

【答案】(1)見解析;(2)長為1.

【解析】試題分析:(1)連結,,則由余弦定理可知根據(jù)直棱柱的性質(zhì),先由面面垂直證明線面垂直,再得到線線垂直,根據(jù)線面垂直的判定定理可得到平面,進而可得結果;(2)為原點,以方向為軸,以方向為軸,以方向為軸,建立坐標系分別根據(jù)向量垂直數(shù)量積為零列方程組求出平面與平面的一個法向量,根據(jù)空間向量夾角余弦公式列方程,從而可得結果.

試題解析:(1)連結,,則由余弦定理可知,

由直棱柱可知,

(2)以為原點,以方向為軸,以方向為軸,以方向為,建立坐標系.

),,

,

,

,又,則,故長為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且過點.過點的直線交橢圓 兩點, 為橢圓的左頂點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))

(1)若,當時,試比較2的大;

(2)若函數(shù)有兩個極值點,求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為菱形,,上的點,過的平面分別交于點,,且平面.

(1)證明:;

(2)當的中點,與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某技術公司開發(fā)的某種產(chǎn)品中隨機抽取200件,測量這些產(chǎn)品的一項質(zhì)量指標值(記為),由測量結果得到如下頻率分布直方圖:

公司規(guī)定:當時,產(chǎn)品為正品;當時,產(chǎn)品為次品,公司每生產(chǎn)一件這種產(chǎn)品,若是正品,則盈利90元;若是次品,則虧損30元,記的分布列和數(shù)學期望;

由頻率分布直方圖可以認為,服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)

①利用該正態(tài)分布,求;

②某客戶從該公司購買了500件這種產(chǎn)品,記表示這500件產(chǎn)品中該項質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù),利用①的結果,求.

附:

,則,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為

A. 11π B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4,坐標系與參數(shù)方程

已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設Mx,y)為橢圓C上任意一點,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計了黔東南州從2010年到2017年的旅游總人數(shù)(萬人次)的變化情況,從一個側面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總人數(shù)的四個判斷中,錯誤的是( )

A. 旅游總人數(shù)逐年增加

B. 2017年旅游總人數(shù)超過2015、2016兩年的旅游總人數(shù)的和

C. 年份數(shù)與旅游總人數(shù)成正相關

D. 從2014年起旅游總人數(shù)增長加快

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標方程為

)求的極坐標方程與的直角坐標方程.

)若上任意一點,過點的直線于點,,求的取值范圍.

查看答案和解析>>

同步練習冊答案