15.已知過拋物線x2=4y焦點F的直線交拋物線于A、B兩點(點A在第一象限),若$\overrightarrow{AF}=3\overrightarrow{FB}$,則直線的方程為( 。
A.$\sqrt{3}x-y-\sqrt{3}=0$B.$x-\sqrt{3}y+\sqrt{3}=0$C.$x-\sqrt{3}y-1=0$D.$\sqrt{3}x-y+1=0$

分析 根據(jù)直線方程可知直線恒過定點F(0,1),過A、B分別作BQ⊥l于Q,AP⊥l于P,BC⊥AP,垂足為C,由|AF|=3|FB|,則|AP|=3|BQ|,進而求得直線的斜率.

解答 解:設拋物線C:x2=4y的準線為l:y=-1,焦點F(0,1)
設直線AB:y=kx+1(k>0)
過A、B分別作AP⊥l于P,BQ⊥l于Q,BC⊥AP,垂足為C,
由|AF|=3|FB|=3m,則|AP|=3|BQ|=3m,∴|AC|=2m,|AB|=4m,|BC|=2$\sqrt{3}$m
∴k=$\frac{\sqrt{3}}{3}$,
則直線AB的方程:y=$\frac{\sqrt{3}}{3}$x+1,整理得:x-$\sqrt{3}$y+$\sqrt{3}$=0,
故選:B.

點評 本題主要考查了拋物線的簡單性質(zhì),考查了對拋物線的基礎知識的靈活運用,考查了數(shù)形結(jié)合的思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0),若f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),且f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上單調(diào),則f(x)的最小正周期是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2,a9,a30成等比數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足$\frac{1}{_{n+1}}$-$\frac{1}{_{n}}$=an(n∈N*),且b1=$\frac{1}{3}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+x-xlnx$的導函數(shù)為f'(x).
(Ⅰ)判斷f(x)的單調(diào)性;
(Ⅱ)若關于x的方程f'(x)=m有兩個實數(shù)根x1,x2(x1<x2),求證:${x_1}{x_2}^2<2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中$A>0,ω>0,0<Φ<\frac{π}{2}$)的圖象與x軸的交點中,相鄰的兩個交點之間的距離為$\frac{π}{2}$,且圖象上的一個最低點為$M(\frac{2π}{3},-2)$,則f(x)的解析式為(  )
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2cos(2x+\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=cos(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},則( 。
A.任意m∈A,都有f(m+3)>0B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若4-3a-a2i=a2+4ai,則實數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.計算定積分:$\int_0^1{\sqrt{-{x^2}+2x}}dx$=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.閱讀如圖的程序框圖,運行相應的程序,則輸出的S值為3.

查看答案和解析>>

同步練習冊答案