10.如圖△ABC的角平分線AD的延長線交它的外接圓于點E.
(Ⅰ)證明:△ABE∽△ADC;
(Ⅱ)若BC為△ABC外接圓的直徑且AD•AE=2,求△ABC的面積.

分析 (Ⅰ)推導(dǎo)出∠BAE=∠CAD,∠AEB=∠ACD,由此能證明△ABE~△ADC.
(Ⅱ)由△ABE~△ADC,得AB•AC=AD•AE=2,再由又BC為直徑,能求出△ABC的面積.

解答 證明:(Ⅰ)∵△ABC的角平分線AD的延長線交它的外接圓于點E,
∴∠BAE=∠CAD,(2分)
∵∠AEB與∠ACD是同弧上的圓周角,
∴∠AEB=∠ACD,
∴△ABE~△ADC.(5分)
解:(Ⅱ)由(Ⅰ)知△ABE~△ADC,
∴$\frac{AB}{AE}=\frac{AD}{AC}$,
即AB•AC=AD•AE=2,(8分)
又BC為直徑,∴∠BAC=90°,
∴${S_{△ABC}}=\frac{1}{2}AB•AC=1$.(10分)

點評 本題考查兩三角形相似的證明,考查三角形面積的求法,是中檔題,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中俯視圖中的弧線是半徑為1的四分之一個圓弧,則該幾何體的體積為( 。
A.1B.C.1-$\frac{π}{4}$D.1-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,ABCD為邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE與平面ABCD所成角為45°,G,H分別為AB,EC的中點.(1)求證:GH∥平面ADEF;
(2)求二面角F-BD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在三棱柱ABC-A1B1C1中,正方形AA1B1B的邊長是整數(shù),點H是其中心,C1H⊥平面AA1B1B,且C1H=$\sqrt{6}$,三棱柱ABC-A1B1C1的側(cè)面積為4($\sqrt{7}$+1).
(Ⅰ)求AA1;
(Ⅱ)求二面角A-BC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在∠ABC的平分線上.
(1)求證:DE∥平面ABC;
(2)求二面角E-BC-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:
(1)求證:AB⊥CD;
(2)若M為AD的中點,求二面角A-BM-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知球的直徑SC=4,A,B是該球面上的兩點,∠AOB=90°,O為球心,∠ASC=∠BSC=45°,則棱錐S-ABC的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{{(10+2\sqrt{2})π}}{2}+1$B.$\frac{13π}{6}$C.$\frac{{(11+\sqrt{2})π}}{2}+1$D.$\frac{{(11+2\sqrt{2})π}}{2}+1$

查看答案和解析>>

同步練習(xí)冊答案