分析 (Ⅰ)設(shè)AA1=2a,則a∈N*,過H分別作HE⊥BB1,HF⊥AA1,分別交BB1,AA1于E、F點(diǎn),連結(jié)C1E、C1F,則AA1⊥C1F,C1E⊥BB1,從而C1E=C1F=$\sqrt{{a}^{2}+6}$,由此利用三棱信的側(cè)面積能求出AA1.
(Ⅱ)過點(diǎn)B作直線l垂直于平面ABB1A1,以BA為x軸,BB1為y軸,l為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BC-C1的余弦值.
解答 解:(Ⅰ)設(shè)AA1=2a,則a∈N*,
過H分別作HE⊥BB1,HF⊥AA1,
分別交BB1,AA1于E、F點(diǎn),連結(jié)C1E、C1F,
∵C1H⊥AA1,又HF⊥AA1,C1H∩HF=H,
∴AA1⊥C1F,同理C1E⊥BB1,
∴C1E=C1F=$\sqrt{{a}^{2}+6}$,
又三棱信的側(cè)面積為$4{a}^{2}+2×2a×\sqrt{{a}^{2}+6}$=4($\sqrt{7}+1$),
∵a∈N*,∴a=1,∴AA1=2.
(Ⅱ)過點(diǎn)B作直線l垂直于平面ABB1A1,以BA為x軸,BB1為y軸,l為z軸,建立空間直角坐標(biāo)系,
則A(2,0,0),B(0,0,0),C1(1,1,$\sqrt{6}$),C(1,-1,$\sqrt{6}$),
∴$\overrightarrow{BC}$=(1,-1,$\sqrt{6}$),$\overrightarrow{BA}$=(2,0,0),$\overrightarrow{C{C}_{1}}$=(0,2,0),
設(shè)$\overrightarrow{m}$=(x,y,z)為平面ABC的法向量,
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=x-y+\sqrt{6}z=0}\\{\overrightarrow{m}•\overrightarrow{BA}=2x=0}\end{array}\right.$,取y=6,得$\overrightarrow{m}$=(0,6,$\sqrt{6}$),
設(shè)平面BCC1的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=a-b+\sqrt{6}c=0}\\{\overrightarrow{n}•\overrightarrow{C{C}_{1}}=2b=0}\end{array}\right.$,取a=-6,得$\overrightarrow{n}$=(-6,0,$\sqrt{6}$),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{6}{\sqrt{36+6}•\sqrt{36+6}}$=$\frac{1}{7}$,
∴二面角A-BC-C1的余弦值為$\frac{1}{7}$.
點(diǎn)評 本題考查線段長的求法,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$ | B. | $\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$ | ||
C. | $\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$ | D. | $\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | 4 | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 3 | 10 | 12 | 7 | 2 | 1 |
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com