13.如圖所示,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一點,且CE=2PE.
(1)求證:AE⊥平面PBC;
(2)求二面角A-PC-D的大小.

分析 (1)先證BC⊥平面PAC,可得AE⊥BC,再用勾股定理的逆定理證AE⊥PC,由此能證明AE⊥平面PBC.
(2)設AC中點為O,CE中點為M,連DO,OM,DM,由三垂線逆定理知DM⊥PC,∠OMD為二面角A-PC-D的平面角,由此能求出二面角A-PC-D的大。

解答 證明:(1)∵PA⊥平面ABCD,BC?平面ABCD,∴BC⊥PA,
∵底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,
∴AC=BC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∴AC2+BC2=AB2,∴AC⊥BC,
∵AC∩PA=A,∴BC⊥平面PAC,∴AE⊥BC,
PC=$\sqrt{1+2}$=$\sqrt{3}$,
∵E是棱PC上一點,且CE=2PE,
∴PE=$\frac{\sqrt{3}}{3}$,CE=$\frac{2\sqrt{3}}{3}$,
∴PA2-PE2=AC2-CE2,∴AE⊥PC,
∵BC∩PC=C,∴AE⊥平面PBC.(4分)
解:(2)設AC中點為O,CE中點為M,連DO,OM,DM,
則OM∥AE,DO⊥平面PAC,由(1)知AE⊥PC,∴OM⊥PC,
由三垂線逆定理知DM⊥PC,∠OMD為二面角A-PC-D的平面角,
∵$DO=\frac{{\sqrt{2}}}{2}$,$OM=\frac{1}{2}AE=\frac{{\sqrt{6}}}{6}$$tan∠OMD=\frac{OD}{OM}=\sqrt{3}$,
∴∠OMD=60°,
∴二面角A-PC-D的大小60°.(12分)

點評 本題考查線面垂直的證明,考查二面角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知復數(shù)z=k-2i(k∈R)的共軛復數(shù)$\overline{z}$,且z-($\frac{1}{2}$-i)=$\frac{\overline{z}}{2}$-2i.
(Ⅰ)求k的值;
(Ⅱ)若過點(0,-2)的直線l的斜率為k,求直線l與曲線y=$\sqrt{x}$以及y軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點與拋物線y2=16x的焦點重合,且雙曲線的離心率等于2,則該雙曲線的漸近線方程為(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\sqrt{2}x$D.y=±2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=42.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{2}$,AC=2$\sqrt{3}$,AA1=1,∠BAC=90°,D為線段BC的中點.
(1)求異面直線B1D與AC所成角的大小;
(2)求二面角D-A1B1-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,ABCD為邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE與平面ABCD所成角為45°,G,H分別為AB,EC的中點.(1)求證:GH∥平面ADEF;
(2)求二面角F-BD-E的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在三棱柱ABC-A1B1C1中,正方形AA1B1B的邊長是整數(shù),點H是其中心,C1H⊥平面AA1B1B,且C1H=$\sqrt{6}$,三棱柱ABC-A1B1C1的側(cè)面積為4($\sqrt{7}$+1).
(Ⅰ)求AA1;
(Ⅱ)求二面角A-BC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:
(1)求證:AB⊥CD;
(2)若M為AD的中點,求二面角A-BM-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個三棱錐的三視圖如圖所示,則該棱錐的外接球的體積為( 。
A.1000$\sqrt{2}$πB.125$\sqrt{2}$πC.$\frac{1000\sqrt{2}π}{3}$D.$\frac{125\sqrt{2}π}{3}$

查看答案和解析>>

同步練習冊答案