分析 (1)求導(dǎo)數(shù),利用函數(shù)g(x)=lnx+ax2-3x,在點(diǎn)(1,f(1))處的切線平行于x軸直線,求a的值;
(2)利用導(dǎo)數(shù)的正負(fù),求函數(shù)g(x)的極值.
解答 解:(1)∵函數(shù)f(x)=lnx,g(x)=f(x)+ax2-3x,g(x)=lnx+ax2-3x,
∴g′(x)=$\frac{1}{x}$+2ax-3,
∵函數(shù)g(x)在點(diǎn)(1,g(1))處的切線平行于x軸,
∴r′(1)=-2+2a=0,
∴a=1;
(2)g′(x)=$\frac{1}{x}$+2x-3(x>0),
∴由g′(x)>0可得x>1或x∈(0,$\frac{1}{2}$),函數(shù)的單調(diào)增區(qū)間為(1,+∞),(0,$\frac{1}{2}$),單調(diào)減區(qū)間為($\frac{1}{2}$,1)
x=1時(shí),函數(shù)取得極小值g(1)=-2,x=$\frac{1}{2}$時(shí),極大值為:-ln2-$\frac{5}{4}$.
點(diǎn)評 本題考查滿足條件的實(shí)數(shù)的求法,考查函數(shù)的單調(diào)區(qū)間的求法.解題時(shí)要認(rèn)真題,仔細(xì)解答,注意函數(shù)的導(dǎo)數(shù)、切線方程和單調(diào)性等知識點(diǎn)的綜合運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -187 | B. | -2 | C. | -32 | D. | -17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | $\frac{18}{25}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,18) | B. | ($\frac{3(\sqrt{5}-1)}{2}$,2] | C. | [2,$\frac{27-9\sqrt{5}}{2}$) | D. | (2,9-3$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({log_2}x)'=\frac{1}{xln2}$ | B. | $(x+\frac{1}{x})'=1+\frac{1}{x^2}$ | C. | (3x)'=3xlog3e | D. | (x2cosx)'=-2xsinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com