6.已知向量|$\overrightarrow{a}$|=2,$\overrightarrow$與($\overrightarrow$-$\overrightarrow{a}$)的夾角為30°,則|$\overrightarrow$|最大值為4.

分析 由題意畫出以|$\overrightarrow{a}$|,|$\overrightarrow$|為鄰邊做平行四邊形ABCD,然后利用正弦定理求解.

解答 解:以|$\overrightarrow{a}$|,|$\overrightarrow$|為鄰邊做平行四邊形ABCD,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,
則$\overrightarrow{BD}$=$\overrightarrow-\overrightarrow{a}$,由題意∠ADB=30°,設(shè)∠ABD=θ,
∵|$\overrightarrow{a}$|=2,
∴在△ABD中,由正弦定理可得,$\frac{AB}{sin30°}$=$\frac{AD}{sinθ}$,
∴AD=4sinθ≤4.
即|$\overrightarrow$|的最大值為4.
故答案為:4.

點(diǎn)評(píng) 本題考查了向量的平行四邊形法則的應(yīng)用,考查三角形中正弦定理的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知${\vec e_1}$,${\vec e_2}$是同一平面內(nèi)兩個(gè)單位向量,其夾角為60°,如果$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$.
(1)求$\vec a•\vec b$
(2)求$\vec a$與$\vec b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,在圓內(nèi)隨機(jī)撒一把豆子,統(tǒng)計(jì)落在其內(nèi)接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內(nèi)的豆子數(shù)為m,則圓周率π的估算值是( 。
A.$\frac{n}{m}$B.$\frac{2n}{m}$C.$\frac{3n}{m}$D.$\frac{2m}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.“雷神”火鍋為提高銷售業(yè)績,委托我校同學(xué)研究氣溫對(duì)營業(yè)額的影響,并提供了一份該店在3月份中5天的日營業(yè)額y(千元)與當(dāng)日最低氣溫x(℃)的數(shù)據(jù),如表:
x258911
y1210887
(Ⅰ)請(qǐng)你求出y關(guān)于x的回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若4月份某天的最低氣溫為13攝氏度,請(qǐng)預(yù)測該店當(dāng)日的營業(yè)額.
【參考公式】$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若圓x2+y2-4x=0上恰有四個(gè)點(diǎn)到直線2x-y+m=0的距離等于1,則實(shí)數(shù)m的取值范圍是方程是( 。
A.$({-2-\sqrt{5},-2+\sqrt{5}})$B.$({-4-\sqrt{5},-4+\sqrt{5}})$C.$({-4-3\sqrt{5},-4-\sqrt{5}})$D.$({-4+\sqrt{5},-4+3\sqrt{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}(2-a)x-3a(x<1)\\ log_ax(x≥1)\end{array}$是R上的增函數(shù),那么實(shí)數(shù)a的范圍(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=xlnx-mx2有兩個(gè)極值點(diǎn),則實(shí)數(shù)m的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x),g(x)在[a,b]上可導(dǎo),且f'(x)>g'(x),則當(dāng)a<x<b時(shí)有( 。
A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(b)>g(x)+f(b)D.f(x)+g(a)>g(x)+f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.把黑、紅、白3張紙牌分給甲、乙、丙三人,每人一張,則事件“甲分得黑牌”與“乙分得黑牌”是( 。
A.對(duì)立事件B.必然事件
C.不可能事件D.互斥但不對(duì)立事件

查看答案和解析>>

同步練習(xí)冊(cè)答案