本題有2小題,第1小題滿分5分,第2小題滿分7分.

若集合,

(1)若,求集合;

(2)若,求的取值范圍.

 

 

 

 

 

【答案】

 解:(1)若,,則 

    ,,得         

    所以           …………………………………5分

 

(2)因?yàn)?sub>,所以  即          

  

 所以  且

所以    ………………………………………………………12分

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(滿分14分)本題有2小題,第1小題6分,第2小題8分.

已知在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的直角坐標(biāo)分別為,,

(1)若,求的值;

(2)若為銳角三角形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(滿分14分)本題有2小題,第1小題7分,第2小題7分.

已知在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的直角坐標(biāo)分別為,,

(1)若,求的值;

(2)若為鈍角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.
已知數(shù)列{}和{}滿足:對(duì)于任何,有,為非零常數(shù)),且
(1)求數(shù)列{}和{}的通項(xiàng)公式;
(2)若的等差中項(xiàng),試求的值,并研究:對(duì)任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

已知數(shù)列{}和{}滿足:對(duì)于任何,有,為非零常數(shù)),且

(1)求數(shù)列{}和{}的通項(xiàng)公式;

(2)若的等差中項(xiàng),試求的值,并研究:對(duì)任意的是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(滿分15分)本題有2小題,第1小題6分,第2小題9分.

如圖,在直角梯形中,,,,.將(及其內(nèi)部)繞所在的直線旋轉(zhuǎn)一周,形成一個(gè)幾何體.

(1)求該幾何體的體積

(2)設(shè)直角梯形繞底邊所在的直線旋轉(zhuǎn)角)至,問:是否存在,使得.若存在,求角的值,若不存在,請(qǐng)說明理由.

 

 

 

 

                      

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案