【題目】某工科院校對(duì)A,B兩個(gè)專業(yè)的男女生人數(shù)進(jìn)行調(diào)查,得到如下的列聯(lián)表:


專業(yè)A

專業(yè)B

總計(jì)

女生

12

4

16

男生

38

46

84

總計(jì)

50

50

100

(1)B專業(yè)的女生中隨機(jī)抽取2名女生參加某項(xiàng)活動(dòng),其中女生甲被選到的概率是多少?

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為工科院校中性別專業(yè)有關(guān)系呢?

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

【答案】(12)在犯錯(cuò)誤的概率不超過(guò)0.05的前提下能認(rèn)為工科院校中性別專業(yè)有關(guān)系.

【解析】(1)設(shè)B專業(yè)的4名女生為甲、乙、丙、丁,隨機(jī)選取兩個(gè)共有(甲,乙),(甲,丙)(甲,丁),(乙,丙),(乙,丁),(丙,丁)6種可能,其中選到甲的共有3種情況,則女生甲被選到的概率是P.

(2)根據(jù)列聯(lián)表中的數(shù)據(jù)k≈4.762,

由于4.762>3.841,因此在犯錯(cuò)誤的概率不超過(guò)0.05的前提下能認(rèn)為工科院校中性別專業(yè)有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)全集U{2,4,-(a3)2},集合A{2,a2a2},若UA{1},求實(shí)數(shù)a的值. (2)已知A{x|2axa3}B{x|x<1x>5},若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=.(a>0)

(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;

(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線的兩個(gè)交點(diǎn)間的距離為.

)求橢圓的方程;

)分別過(guò)滿足,設(shè)的上半部分分別交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求方程的實(shí)數(shù)解;

)如果數(shù)列滿足,),是否存在實(shí)數(shù),使得對(duì)所有的都成立?證明你的結(jié)論.

)在()的條件下,設(shè)數(shù)列的前項(xiàng)的和為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】莫言是中國(guó)首位獲得諾貝爾文學(xué)獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞。某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了程度,結(jié)果如下:

閱讀過(guò)莫言的作品數(shù)(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10


(1)試估計(jì)該學(xué)校學(xué)生閱讀莫言作品超過(guò)50篇的概率.

(2)對(duì)莫言作品閱讀超過(guò)75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”,根據(jù)題意完成下表,并判斷能否有的把握認(rèn)為“對(duì)莫言作品的非常了解”與性別有關(guān)?

非常了解

一般了解

合計(jì)

男生

女生

合計(jì)

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市理論預(yù)測(cè)2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示

年份200(年)

0

1

2

3

4

人口數(shù) (十萬(wàn))

5

7

8

11

19

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)據(jù)此估計(jì)2005年該城市人口總數(shù).

參考公式: 用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加的5項(xiàng)預(yù)賽成績(jī)記錄如下:


82

82

79

95

87


95

75

80

90

85

1)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;

2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案