等比數(shù)列中,,且 的等差中項(xiàng),若
(Ⅰ)求數(shù)列 的通項(xiàng)公式;
(Ⅱ)若數(shù)列 滿足 ,求數(shù)列的前n項(xiàng)和

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)由及等比數(shù)列性質(zhì)可得,由的等差中項(xiàng)知,,將上式用表示出來(lái),化為關(guān)于公比的方程,解出公比,求出數(shù)列的通項(xiàng)公式,代入即可求出數(shù)列的通項(xiàng)公式;(Ⅱ)由(Ⅰ),所以=,采用分組求和法求和,因?yàn)閧}是等比數(shù)列,用等比數(shù)列前n項(xiàng)和公式求和,對(duì){}用拆項(xiàng)相消法求和.
試題解析:(Ⅰ)由解得:
  ∴                         (6分)
(Ⅱ)                    (8分)

 (12分)
考點(diǎn):等比數(shù)列通項(xiàng)公式、性質(zhì)及前n項(xiàng)和公式,對(duì)數(shù)的運(yùn)算法則,分組求和法,拆項(xiàng)相消法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

等差數(shù)列,該數(shù)列前n項(xiàng)和取最小值時(shí),n =       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,其中為數(shù)列的前項(xiàng)和,并且.
(1)設(shè)),求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列),求證:數(shù)列是等差數(shù)列;
(3)求數(shù)列的通項(xiàng)公式和前項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列滿足,令.
(1)試判斷數(shù)列是否為等差數(shù)列?并說(shuō)明理由;
(2)若,求項(xiàng)的和;
(3)是否存在使得三數(shù)成等比數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差為2,前項(xiàng)和為,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,前項(xiàng)和
(1) 求數(shù)列的通項(xiàng)公式;
(2) 設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)一切正整數(shù)
成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,則,成等差數(shù)列.類比以上結(jié)論有:設(shè)等比數(shù)列的前項(xiàng)積為,則,______,________成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

公差不為零的等差數(shù)列的前項(xiàng)和為.若的等比中項(xiàng),S10="60" ,則S20等于   _________ 

查看答案和解析>>

同步練習(xí)冊(cè)答案