【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
附:K2=
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

【答案】
(1)解:由已知得,抽取的100名學(xué)生中,男生60名,女生40名,

分?jǐn)?shù)小于等于110分的學(xué)生中,

男生人有60×0.05=3(人),記為A1,A2,A3;

女生有40×0.05=2(人),記為B1,B2;…(2分)

從中隨機(jī)抽取2名學(xué)生,所有的可能結(jié)果共有10種,它們是:

(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),

(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2);

其中,兩名學(xué)生恰好為一男一女的可能結(jié)果共有6種,它們是:

(A1,B1),(A1,B2),(A2,B1),

(A2,B2),(A3,B1),(A3,B2);

故所求的概率為P= =


(2)解:由頻率分布直方圖可知,

在抽取的100名學(xué)生中,男生 60×0.25=15(人),女生40×0.375=15(人)

據(jù)此可得2×2列聯(lián)表如下:

數(shù)學(xué)尖子生

非數(shù)學(xué)尖子生

合計(jì)

男生

15

45

60

女生

15

25

40

合計(jì)

30

70

100

所以得K2= = ≈1.79;

因?yàn)?.79<2.706,

所以沒(méi)有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”


【解析】(1)根據(jù)分層抽樣原理計(jì)算抽取的男、女生人數(shù),利用列舉法計(jì)算基本事件數(shù),求出對(duì)應(yīng)的概率值;(2)由頻率分布直方圖計(jì)算對(duì)應(yīng)的數(shù)據(jù),填寫(xiě)列聯(lián)表,計(jì)算K2值,對(duì)照數(shù)表即可得出概率結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)任意實(shí)數(shù)m,n,都有f(m)f(n)=f(m+n),且當(dāng)x<0時(shí),0<f(x)<1.
(1)證明:①f(0)=1;②當(dāng)x>0時(shí),f(x)>1;③f(x)是R上的增函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2﹣3ax+1)f(﹣3x+6a+1)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e為自然對(duì)數(shù)的底數(shù))

(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在 上無(wú)零點(diǎn),求a的最小值;

(Ⅲ)若對(duì)任意給定的x0∈(0,e],在(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時(shí)的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ , ]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿場(chǎng)售價(jià)與上市時(shí)間的關(guān)系如圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系如圖二的拋物線段表示.

(1)寫(xiě)出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式p=f(t);寫(xiě)出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(t);
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿純收益最大?(注:市場(chǎng)售價(jià)各種植成本的單位:元/102㎏,時(shí)間單位:天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率.

(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

(3)在(2)的條件下,我市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:方程x2mx+1=0有兩個(gè)不相等的負(fù)根;q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若pq為真,pq為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過(guò)原點(diǎn),若存在,請(qǐng)求出k的值:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長(zhǎng)為2的等邊三角形,
(Ⅰ)求證:平面PAM⊥平面PDM;
(Ⅱ)若點(diǎn)E為PC中點(diǎn),求二面角P﹣MD﹣E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案