【題目】已知橢圓的焦距為,其短軸的兩個端點與長軸的一個端點構成正三角形.
(Ⅰ)求橢圓的標準方程和長軸長;
(Ⅱ)設為橢圓的左焦點, 為直線上任意一點,過點作直線的垂線交橢圓于,記分別為點和到直線的距離,證明.
【答案】(1),長軸長為.(2)見解析
【解析】試題分析: 由橢圓的性質可知,即可求得的值,從而求得橢圓的方程和長軸長由求得直線的方程,代入橢圓方程,由韋達定理及中點坐標公式可求得的中點,由,根據(jù)三角形全等的判定和性質可證明
解析:(Ⅰ)由題意可知,橢圓的焦點在軸上, ,
由,解得
所以橢圓的方程為,長軸長為.
(Ⅱ)由(Ⅰ)知點的坐標為,設點的坐標為,
則直線的斜率
當時,直線的斜率直線的方程是,
當時,直線的方程是,也符合的形式,
設,將直線的方程與橢圓聯(lián)立,
由得,
,所以,,
設為線段的中點,則點
所以直線的斜率
又直線的斜率,
所以點在直線上,
由三角形全等的判定和性質可知:
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C: (a>b>0)的離心率為,F(xiàn)為橢圓C的右焦點.A(-a,0),|AF|=3.
(I)求橢圓C的方程;
(II)設O為原點,P為橢圓上一點,AP的中點為M.直線OM與直線x=4交于點D,過O且平行于AP的直線與直線x=4交于點E.求證:∠ODF=∠OEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.
求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);
估計用電量落在中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學解答一道解析幾何題:“已知直線l:與x軸的交點為A,圓O:經(jīng)過點A.
(Ⅰ)求r的值;
(Ⅱ)若點B為圓O上一點,且直線AB垂直于直線l,求.”
該同學解答過程如下:
解答:(Ⅰ)令,即,解得,所以點A的坐標為.
因為圓O:經(jīng)過點A,所以.
(Ⅱ)因為.所以直線AB的斜率為.
所以直線AB的方程為,即.
代入消去y整理得,
解得,.當時,.所以點B的坐標為.
所以.
指出上述解答過程中的錯誤之處,并寫出正確的解答過程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnxx2,g(x)x2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)若關于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=﹣1,且正實數(shù)x1,x2滿足F(x1)=﹣F(x2),求證:x1+x21.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社會研究機構,為了研究大學生的閱讀習慣,隨機調查某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,其中男女各一半,男生中有表示會讀,女生中有表示不會讀.
(1)根據(jù)調查結果,得到如下2╳2列聯(lián)表:
男 | 女 | 總計 | |
讀營養(yǎng)說明 | |||
不讀營養(yǎng)說明 | |||
總計 |
(2)根據(jù)以上列聯(lián)表,進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關系?
P(K2≥k) | 0.10 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調查了兩個地區(qū)共100名觀眾,得到如下的列聯(lián)表:
非常滿意 | 滿意 | 合計 | |
| |||
合計 |
已知在被調查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為0.35,且.
(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調查,則應抽取“滿意”的地區(qū)的人數(shù)各是多少?
(2)在(1)抽取的“滿意”的觀眾中,隨機選出2人進行座談,求至少有1名是地區(qū)觀眾的概率?
(3)完成上述表格,并根據(jù)表格判斷是否有90%的把握認為觀眾的滿意程度與所在地區(qū)有關系?
附:參考公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,準線為.已知點在拋物線上,點在上, 是邊長為4的等邊三角形.
(1)求的值;
(2)在軸上是否存在一點,當過點的直線與拋物線交于、兩點時, 為定值?若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com