7.拋擲一枚質(zhì)地均勻的骰子兩次,記A={兩次的點數(shù)均為偶數(shù)},B={兩次的點數(shù)之和為8},則P(B|A)=(  )
A.$\frac{1}{12}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 此是一個條件概率模型的題,可以求出事件A包含的基本事件數(shù),與在A發(fā)生的條件下,事件B包含的基本事件數(shù),再用公式求出概率.

解答 解:由題意事件記A={兩次的點數(shù)均為偶數(shù)},包含的基本事件數(shù)是(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)共9個基本事件,
在A發(fā)生的條件下,B={兩次的點數(shù)之和為8},
包含的基本事件數(shù)是{2,6},{4,4},{6,2}共3個基本事件,
∴P(B|A)=$\frac{3}{9}$=$\frac{1}{3}$.
故選:C.

點評 本題考查條件概率,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2elnx.(e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的圖象在(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$α∈(0,\frac{π}{2}),β∈(0,\frac{π}{4})$,且tanα=$\frac{cosβ+sinβ}{cosβ-sinβ}$,則下列正確的是( 。
A.$2α-β=\frac{π}{4}$B.$2α+β=\frac{π}{4}$C.$α-β=\frac{π}{4}$D.$α+β=\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高點D的坐標(biāo)為($\frac{π}{8}$,2),由最高點D運動到相鄰最低點時,函數(shù)圖形與x的交點的坐標(biāo)為($\frac{3π}{8}$,0);
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時,求函數(shù)f(x)的最大值和最小值以及分別取得最大值和最小值時相應(yīng)的自變量x的值.
(3)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)減區(qū)間及對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=x+xlnx,若k(x-2)<f(x)對任意x>2恒成立,則整數(shù)k的最大值是(  )
A.8B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)$f(x)=\left\{\begin{array}{l}ln(-x),(x<0)\\ tanx,(x≥0)\end{array}\right.$,則$f(f(\frac{3π}{4}))$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一個直角三角形的周長為2p.
(1)求其斜邊長的最小值;
(2)求其直角邊的和的最大值;
(3)求其面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(2,3,1),$\overrightarrow$=(1,2,3),則|$\overrightarrow{a}$-$\overrightarrow$|等于$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時氣球的高是30m,則河流的寬度BC等于$60(\sqrt{3}-1)$m.

查看答案和解析>>

同步練習(xí)冊答案