若集合A={x|x2-7x+10<0},集合B={x|
1
2
<2x<8},則A∩B=( 。
A、(-1,3)
B、(-1,5)
C、(2,5)
D、(2,3)
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出A與B中不等式的解集確定出A與B,找出兩集合的交集即可.
解答: 解:由A中不等式變形得:(x-2)(x-5)<0,
解得:2<x<5,即A=(2,5),
由B中不等式變形得:2-1=
1
2
<2x<8=23,得到-1<x<3,即B=(-1,3),
則A∩B=(2,3).
故選:D.
點(diǎn)評:此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2-6x-3的單調(diào)增區(qū)間為( 。
A、(-∞,-3]
B、[-3,+∞)
C、(-∞,3]
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(x+a)(bx+2a)(常數(shù)a,b∈R)是偶函數(shù),且它的值域?yàn)椋?∞,4],則該函數(shù)的解析式為( 。
A、f(x)=4x2
B、f(x)=-4x2+2
C、f(x)=-2x2+4
D、f(x)=4x2或f(x)=-2x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an]為等差數(shù)列,a1+a3+a5=9,a2+a4+a6=15,則a3+a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②設(shè)p、q是簡單命題,若“p∨q”為假命題,則“?p∧?q”為真命題;
③若p是q的充分不必要條件,則?p是?q的必要不充分條件;
④把函數(shù)y=sin(-2x)(x∈R)的圖象上所有的點(diǎn)向右平移
π
8
個單位即可得到函數(shù)y=sin(-2x+
π
4
)
(x∈R)的圖象.其中所有正確說法的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log2x-2
的定義域是(  )
A、[4,+∞)
B、[0,+∞)
C、(4,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,k),
b
=(2,2),且
a
+
b
a
共線,那么k的值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2i
1+i
(i是虛數(shù)單位)的虛部是( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx,將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的
1
2
倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象,則關(guān)于f(x)g(x)有下列命題,其中真命題的個數(shù)是(  )
①函數(shù)y=f(x)•g(x)是偶函數(shù);               
②函數(shù)y=f(x)•g(x)是周期函數(shù);
③函數(shù)y=f(x)•g(x)的圖象關(guān)于點(diǎn)(
π
2
,0)中心對稱;
④函數(shù)y=f(x)•g(x)的最大值為
4
3
9
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案