精英家教網 > 高中數學 > 題目詳情
7.某職業(yè)學校的一個數學興趣小組有4名男生和3名女生,若從這7名學生中任選3名參加數學競賽,要求既有男生又有女生,則不同選法的種數是( 。
A.60B.31C.30D.10

分析 3人中既有男生又有女生,包括2男1女和1男2女兩種情況,分別求出這兩種情況下的選法的數量,相加即得所求.

解答 解:這3人中既有男生又有女生,包括2男1女和1男2女兩種情況.
若3人中有2男1女,則不同的選法共有 C42C31=18種,
若3人中有1男2女,則不同的選法共有C41C32=12種,
根據分類計數原理,所有的不同的選法共有 18+12=30種,
故選:C.

點評 本題主要考查組合及兩個基本原理,組合數公式的應用,體現了分類討論的數學思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.B.$\frac{40π}{3}$C.$\frac{20π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.甲、乙兩名運動員的5次測試成績如圖,設s1,s2分別表示甲、乙兩名運動員測試成績的標準差,$\overline{{x}_{1}}$,$\overline{{x}_{2}}$分別表示甲、乙兩名運動員測試成績的平均數,則有( 。
A.$\overline{{x}_{1}}>\overline{{x}_{2}}$,s1>s2B.$\overline{{x}_{1}}<\overline{{x}_{2}}$,s1>s2C.$\overline{{x}_{1}}<\overline{{x}_{2}}$,s1<s2D.$\overline{{x}_{1}}>\overline{{x}_{2}}$,s1<s2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.拋擲100枚質地均勻的硬幣,有下列一些說法:
①全部出現正面向上是不可能事件
②至少有1枚出現正面向上是必然事件
③出現50枚正面向上50枚正面向下是隨機事件
以上說法正確的是(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知函數f(x)滿足以下兩個條件:
(1)當x≤0時,f(x)=x2+x;
(2)當x>0時,f(x)=f(x-1).
若不存在x0使得f(x0)-ax0+2<0,
則a的取值范圍是( 。
A.[1+2$\sqrt{2}$,+∞)B.(-∞,1-2$\sqrt{2}$]C.[1-2$\sqrt{2}$,0]D.[-2,0]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.若角α的終邊過點P(-6,8),則角α的終邊與圓x2+y2=1的交點坐標是( 。
A.(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{4}{5}$,-$\frac{3}{5}$)C.($\frac{3}{5}$,-$\frac{4}{5}$)D.(-$\frac{4}{5}$,$\frac{3}{5}$)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.若表面積為6的正方體內接于球,則該球的表面積等于3π.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.以點(-1,3)為圓心且與直線x-y=0相切的圓的方程為(x+1)2+(y-3)2=8.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.在△ABC中,已知cosA=-$\frac{4}{5}$.
(1)求sinA的值;
(2)求$\frac{sin2A+2si{n}^{2}A}{1+tanA}$的值.

查看答案和解析>>

同步練習冊答案