[2014·焦作模擬]已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使∠F1PF2=60°,則橢圓離心率的取值范圍是________.
[,1)
如圖所示,設(shè)O是橢圓的中心,A是橢圓短軸上的一個(gè)頂點(diǎn),由于∠F1PF2=60°,則只需滿足60°≤∠F1AF2即可,

又△F1AF2是等腰三角形,且|AF1|=|AF2|,所以0°<∠F1F2A≤60°,所以≤cos∠F1F2A<1,又e=cos∠F1F2A,所以e的取值范圍是[,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點(diǎn)0,離心率e=,一條準(zhǔn)線的方程是x=2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:=+2,其中M、N是橢圓上的點(diǎn),直線OM與ON的斜率之積為﹣,
問:是否存在定點(diǎn)F,使得|PF|與點(diǎn)P到直線l:x=2的距離之比為定值;若存在,求F的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC的周長為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)C的軌跡E的方程;
(2)過原點(diǎn)作兩條關(guān)于y軸對稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對應(yīng)的四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖5,為坐標(biāo)原點(diǎn),雙曲線和橢圓均過點(diǎn),且以的兩個(gè)頂點(diǎn)和的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得交于兩點(diǎn),與只有一個(gè)公共點(diǎn),且?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對,直線與橢圓恒有公共點(diǎn),則實(shí)數(shù)的取值范圍是(  )
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2為橢圓的兩個(gè)焦點(diǎn),過F1的直線交橢圓于A、B兩點(diǎn),若,則= _____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn)且離心率為
(1)求橢圓的方程;
(2)若斜率為的直線兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線 和橢圓,橢圓C的離心率為,連結(jié)橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)當(dāng)時(shí),設(shè)直線與y軸的交點(diǎn)為P,M為橢圓C上的動(dòng)點(diǎn),求線段PM長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點(diǎn)為,點(diǎn)是橢圓上的一點(diǎn),軸的交點(diǎn)恰為的中點(diǎn), .
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓的右頂點(diǎn),過焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案