(本小題滿分12分)
已知直線 和橢圓,橢圓C的離心率為,連結(jié)橢圓的四個頂點形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個不同的交點,求實數(shù)m的取值范圍;
(3)當(dāng)時,設(shè)直線與y軸的交點為P,M為橢圓C上的動點,求線段PM長度的最大值.
(1);(2);(3)||取得最大值.

試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的相交問題、兩點間的距離公式、配方法求函數(shù)最值等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力.第一問,利用橢圓的標(biāo)準(zhǔn)方程,利用離心率求出基本量a和b,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,直線與橢圓方程聯(lián)立,消參,由于直線與橢圓交于2個點,所以消參后的方程的判別式大于0,解不等式求出m的取值范圍;第三問,將m=2代入,直接得到直線的方程,從而得到p點坐標(biāo),設(shè)出p點坐標(biāo),則利用兩點間距離公式可求出,利用點M在橢圓上,轉(zhuǎn)化x,通過配方法求函數(shù)的最值.
(1)由離心率,得
又因為,所以
即橢圓標(biāo)準(zhǔn)方程為.                                                    4分
(2)由    消得:
所以, 可化為
解得.                                                          8分
(3)由l:,設(shè), 則, 所以                            9分
設(shè)滿足,
|
因為 , 所以                                                          11分
當(dāng)時,||取得最大值.                                                12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:( )的離心率為,點(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點M(4,),其中,切點分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點()處的橢圓切線方程是,證明直線AB恒過橢圓的右焦點;
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.斜率為的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·焦作模擬]已知F1,F(xiàn)2是橢圓的兩個焦點,橢圓上存在一點P,使∠F1PF2=60°,則橢圓離心率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓:的左頂點為,直線交橢圓兩點(下),動點和定點都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點的坐標(biāo).
(3)若為實數(shù),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,上頂點為A,在x軸負(fù)半軸上有一點B,滿足三點的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點作斜率為k的直線與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C: 左右焦,若橢圓C上恰有4個不同的點P,使得為等腰三角形,則C的離心率的取值范圍是 _______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,且離心率.
(1)求橢圓C的方程;
(2)已知過點的直線與該橢圓相交于A、B兩點,試問:在直線上是否存在點P,使得是正三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點P是以為焦點的橢圓上的一點,過焦點的外角平分線的垂線,垂足為M點,則點M的軌跡是( 。
A.拋物線B.橢圓C.雙曲線D.圓

查看答案和解析>>

同步練習(xí)冊答案