分析 (I)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(II)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的圖象的對稱性,求得θ的最小值.
解答 解:(I)根據(jù)y=f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2})$的部分圖象知,
周期$T=\frac{11π}{12}-(-\frac{π}{12})=π$,∴ω=2,且A=2.
再根據(jù)五點法作圖可得ω•(-$\frac{π}{12}$)+φ=0,求得φ=$\frac{π}{6}$,∴f(x)=2sin(2x+$\frac{π}{6}$).
把x=0,y=1代入上式求得 $sinφ=\frac{1}{2}$.
(II)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=$g(x)=2sin[2(x+θ)+\frac{π}{6}]=2sin(2x+2θ+\frac{π}{6})$的圖象,
若y=g(x)圖象的一個對稱中心為$(\frac{5π}{6},0)$,則2•$\frac{5π}{6}$+2θ+$\frac{π}{6}$=kπ,k∈Z,即θ=$\frac{kπ}{2}$-$\frac{11π}{12}$,
故要求θ的最小值為$\frac{π}{12}$.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com