【題目】已知圓A:(x+1)2+y2=16,圓C過(guò)點(diǎn)B(1,0)且與圓A相切,設(shè)圓心C的軌跡為曲線(xiàn)E.
(Ⅰ)求曲線(xiàn)E的方程;
(Ⅱ)過(guò)點(diǎn)B作兩條互相垂直的直線(xiàn)l1,l2,直線(xiàn)l1與E交于M,N兩點(diǎn),直線(xiàn)l2與圓A交于P,Q兩點(diǎn),求的取值范圍.
【答案】(I);(II).
【解析】
(Ⅰ)由題意畫(huà)出圖形,根據(jù)橢圓的定義和性質(zhì)求出a,b,則橢圓方程可求;
(Ⅱ)求出兩直線(xiàn)垂直于坐標(biāo)軸時(shí)的值,當(dāng)兩直線(xiàn)斜率存在且不為0時(shí),設(shè)l1:y=k(x﹣1),則l2:y,分別求出|MN|,|PQ|的值,可得關(guān)于k的函數(shù),利用配方法求值域.
(Ⅰ)圓A:(x+1)2+y2=16的圓心A(﹣1,0),半徑r=4,如圖,
由圖可知,|CA|+|CB|=r=4,
∴圓心C的軌跡為以A,B為焦點(diǎn)的橢圓,且c=1,2a=4,a=2.
∴b.
則曲線(xiàn)E的方程為;
(Ⅱ)如圖,當(dāng)l1⊥x軸,l2⊥y軸時(shí),;
當(dāng)l1⊥y軸,l2⊥x軸時(shí),;
當(dāng)兩直線(xiàn)斜率存在且不為0時(shí),設(shè)l1:y=k(x﹣1),
則l2:y.
聯(lián)立,得(3+4k2)x2﹣8k2x+4k2﹣12=0.
設(shè)M(x1,y1),N(x2,y2),
則,,
∴|MN||x1﹣x2|
.
圓心A到直線(xiàn)x+ky﹣1=0的距離d,
則|PQ|=2.
∴.
∵k2+1>1,∴,則,
∴∈(),
綜上,的取值范圍為[].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為總信號(hào)源點(diǎn),A,B,C是三個(gè)居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5 km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過(guò)點(diǎn)O鋪設(shè)一條總光纜直線(xiàn)EF(E在直線(xiàn)OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長(zhǎng)度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費(fèi)用為w(元). ①求w關(guān)于θ的函數(shù)表達(dá)式;
②求w的最小值及此時(shí)tanθ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓M: =1(a>b>0)的離心率為 ,左焦點(diǎn)F1到直線(xiàn) 的距離為3,圓N的方程為(x﹣c)2+y2=a2+c2(c為半焦距),直線(xiàn)l:y=kx+m(k>0)與橢圓M和圓N均只有一個(gè)公共點(diǎn),分別設(shè)為A,B.
(1)求橢圓M的方程和直線(xiàn)l的方程;
(2)在圓N上是否存在點(diǎn)P,使 ,若存在,求出P點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙、丙、丁四位同學(xué)中選拔一位成績(jī)較穩(wěn)定的優(yōu)秀選手,參加山東省職業(yè)院校技能大賽,在同樣條件下經(jīng)過(guò)多輪測(cè)試,成績(jī)分析如表所示,根據(jù)表中數(shù)據(jù)判斷,最佳人選為( ) 成績(jī)分析表
甲 | 乙 | 丙 | 丁 | |
平均成績(jī) | 96 | 96 | 85 | 85 |
標(biāo)準(zhǔn)差s | 4 | 2 | 4 | 2 |
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓x2+y2﹣2x﹣8y+13=0的圓心到直線(xiàn)ax+y﹣1=0的距離為1,則a=( )
A.﹣
B.﹣
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A(x1 , y1),B(x2 , y2)是橢圓 上的兩點(diǎn),已知向量 =( , ), =( , ),若 =0且橢圓的離心率e= ,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四個(gè)函數(shù):①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,從中任選2個(gè),則事件“所選2個(gè)函數(shù)的圖象有且僅有一個(gè)公共點(diǎn)”的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 , , ,向量 與 垂直,且 .
(1)求數(shù)列 的通項(xiàng)公式;
(2)若數(shù)列 滿(mǎn)足 ,求數(shù)列 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com