【題目】已知橢圓C 的離心率為,右焦點為F,上頂點為A,且△AOF的面積為 (O為坐標原點).

(1)求橢圓C的方程;

(2)P是橢圓C上的一點,過P的直線與以橢圓的短軸為直徑的圓切于第一象限內的一點M,證明:|PF||PM|為定值.

【答案】(1) ;(2)證明見解析.

【解析】試題分析:(1)根據(jù)橢圓的幾何性質得到ac,bc1,解得方程;(2)設橢圓上一點為.P(cos θsin θ),用點點距離表示|PF||PM|,最終求得定值。

解析:

(1)解 由題意可知:橢圓的離心率eac.

由△AOF的面積為S×b×c,則bc1,

a2b2c2,解得abc1.

∴橢圓的標準方程為;.

(2)證明 (1)知:F(10),以橢圓的短軸為直徑的圓的方程為x2y21

P(cos θsin θ),且cos θ>0,

|PF|

M是圓x2y21的切點,則OMPM,且|OM|1,

|PM| cos θ,

|PF||PM|cos θcos θ,

|PF||PM|為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差x(單位:分)與物理偏差y(單位:分)之間的關系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學生序號

1

2

3

4

5

6

7

8

數(shù)學偏差x

20

15

13

3

2

5

10

18

物理偏差y

6.5

3.5

3.5

1.5

0.5

0.5

2.5

3.5

(1)已知xy之間具有線性相關關系,求y關于x的線性回歸方程;

(2)若這次考試該班數(shù)學平均分為118分,物理平均分為90.5,試預測數(shù)學成績126分的同學的物理成績.

參考公式 .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)a∈R.

(1)求函數(shù)f(x)的單調區(qū)間;

(2)若f(x)在(1,2)上是單調函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosCacosB+bcosA=c

)求C;()若c=,ABC的面積為,求ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·河西五市二聯(lián))下列說法正確的是(  )

A. 命題x∈Rex0”的否定是x∈R,ex0”

B. 命題已知xy∈R,若xy≠3,則x≠2y≠1”是真命題

C. x22xaxx∈[1,2]上恒成立“(x22x)min≥(ax)minx∈[1,2]上恒成立

D. 命題a=-1,則函數(shù)f(x)ax22x1只有一個零點的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1中,點E是A1D1的中點,點F是CE的中點.

(Ⅰ)求證:平面ACE⊥平面BDD1B1;

(Ⅱ)求證:AE∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是遞增的等比數(shù)列,滿足,且、的等差中項,數(shù)列滿足,其前項和為,且.

1)求數(shù)列,的通項公式;

2)數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

(2)在[0,10),[40,50)這兩組中采取分層抽樣,抽取6人,再從這6名學生中隨機抽取2人參加體育知識問卷調查,求這2人中一人來自“課外體育達標”和一人來自“課外體育不達標”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856335)[選修4-4:坐標系與參數(shù)方程]

以原點為極點,x軸的非負半軸為極軸建立極坐標系.已知A(2,π),B(2, ),圓C的極坐標方程為ρ2-6ρcos θ+8ρsin θ+21=0.F為圓C上的任意一點.

(Ⅰ)寫出圓C的參數(shù)方程;

(Ⅱ)求△ABF的面積的最大值.

查看答案和解析>>

同步練習冊答案