【題目】已知數(shù)列是遞增的等比數(shù)列,滿足,且是、的等差中項,數(shù)列滿足,其前項和為,且.
(1)求數(shù)列,的通項公式;
(2)數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】高三一班、二班各有6名學生去參加學校組織的高中數(shù)學競賽選拔考試,成績?nèi)缜o葉圖所示.
(1)若一班、二班6名學生的平均分相同,求值;
(2)若將競賽成績在、、內(nèi)的學生在學校推優(yōu)時,分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學生中選兩名,求推優(yōu)時,這兩名學生賦分的和為4分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導(dǎo)學號:05856262)
如圖所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中點,AB⊥平面B1C1CB,∠BCC1=60°.
(Ⅰ)求證:AC⊥平面BDC1;
(Ⅱ)E是線段CC1上的動點,判斷點E到平面AA1B1B的距離是否為定值,若是,求出此定值;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的離心率為,右焦點為F,上頂點為A,且△AOF的面積為 (O為坐標原點).
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上的一點,過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點M,證明:|PF|+|PM|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導(dǎo)學號:05856287)
已知點A(0,1)與B(, )都在橢圓C: (a>b>0)上,直線AB交x軸于點M.
(Ⅰ)求橢圓C的方程,并求點M的坐標;
(Ⅱ)設(shè)O為原點,點D與點B關(guān)于x軸對稱,直線AD交x軸于點N.問:y軸上是否存在點E,使得∠OEM=∠ONE?若存在,求點E的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;
(2)若對于任意x1,x2∈[-1,1],都有,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
已知曲線C1的參數(shù)方程為: (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為: ,直線l的直角坐標方程為.
(l)求曲線C1和直線l的極坐標方程;
(2)已知直線l分別與曲線C1、曲線C2交異于極點的A,B,若A,B的極徑分別為ρ1,ρ2,求|ρ2﹣ρ1|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖像在上連續(xù)不斷,定義:
(),(),其中表示函數(shù)在上的最小值, 表示函數(shù)在上的最大值,若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”.
(1)若, ,試寫出, 的表達式;
(2)已知函數(shù), ,判斷是否為上的“階收縮函數(shù)”,如果是,求出對應(yīng)的,如果不是,請說明理由;
(3)已知,函數(shù),是上的2階收縮函數(shù),求的取值范圍.
數(shù)學附加題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,
在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com