【題目】已知數(shù)列是遞增的等比數(shù)列,滿足,且、的等差中項,數(shù)列滿足,其前項和為,且.

1)求數(shù)列,的通項公式;

2)數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)設(shè)等比數(shù)列的公比為,,用基本元的思想,化為,的,解方程即可求出,從而.同樣用基本元的思想,將化為,即,求出,進而求得(2)先求出,對題目的不等式進行分離參數(shù)得對一切恒成立,然后利用基本不等式可求得.

試題解析:(1)設(shè)等比數(shù)列的公比為,則,

的等差中項,,即.

,,.

依題意,數(shù)列為等差數(shù)列,公差,

,

2,.

不等式化為,,

對一切恒成立.

當且僅當時等號成立,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】高三一班、二班各有6名學生去參加學校組織的高中數(shù)學競賽選拔考試,成績?nèi)缜o葉圖所示.

(1)若一班、二班6名學生的平均分相同,求值;

(2)若將競賽成績在、、內(nèi)的學生在學校推優(yōu)時,分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學生中選兩名,求推優(yōu)時,這兩名學生賦分的和為4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導(dǎo)學號:05856262)

如圖所示,在斜三棱柱ABCA1B1C1中,ABBC=1,AA1=2,DAC的中點,AB⊥平面B1C1CB,∠BCC1=60°.

(Ⅰ)求證:AC⊥平面BDC1

(Ⅱ)E是線段CC1上的動點,判斷點E到平面AA1B1B的距離是否為定值,若是,求出此定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的離心率為,右焦點為F,上頂點為A,且△AOF的面積為 (O為坐標原點).

(1)求橢圓C的方程;

(2)設(shè)P是橢圓C上的一點,過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點M,證明:|PF||PM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導(dǎo)學號:05856287)

已知點A(0,1)與B(, )都在橢圓C (ab>0)上,直線ABx軸于點M.

(Ⅰ)求橢圓C的方程,并求點M的坐標;

(Ⅱ)設(shè)O為原點,點D與點B關(guān)于x軸對稱,直線ADx軸于點N.問:y軸上是否存在點E,使得∠OEM=∠ONE?若存在,求點E的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=emxx2mx.

(1)證明:f(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;

(2)若對于任意x1,x2∈[-1,1],都有,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

已知曲線C1的參數(shù)方程為: θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為: ,直線l的直角坐標方程為

(l)求曲線C1和直線l的極坐標方程;

(2)已知直線l分別與曲線C1、曲線C2交異于極點的A,B,若A,B的極徑分別為ρ1,ρ2,求|ρ2﹣ρ1|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像在上連續(xù)不斷,定義:

),),其中表示函數(shù)上的最小值, 表示函數(shù)上的最大值,若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)上的“階收縮函數(shù)”.

(1)若, ,試寫出 的表達式;

(2)已知函數(shù), ,判斷是否為上的“階收縮函數(shù)”,如果是,求出對應(yīng)的,如果不是,請說明理由;

(3)已知,函數(shù),是上的2階收縮函數(shù),求的取值范圍.

數(shù)學附加題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,

在此幾何體中,給出下面四個結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案