分析 求出f(x)的對稱軸,根據(jù)f(x)的對稱性得出任意兩相鄰兩零點的和,從而得出答案.
解答 解:令2x+$\frac{π}{6}$=$\frac{π}{2}$+kπ得x=$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z,即f(x)的對稱軸方程為x=$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z.
∵f(x)的最小正周期為T=π,$0≤x≤\frac{91π}{6}$,
∴f(x)在(0,$\frac{91π}{6}$)上有30條對稱軸,
∴x1+x2=2×$\frac{π}{6}$,x2+x3=2×$\frac{2π}{3}$,x3+x4=2×$\frac{7π}{6}$,…,xn-1+xn=2×$\frac{44π}{3}$,
將以上各式相加得:x1+2x2+2x3+…+2xn-1+xn=2×($\frac{π}{6}$+$\frac{2π}{3}$+$\frac{7π}{6}$+…+$\frac{44π}{3}$)=2×$\frac{\frac{π}{6}+\frac{44π}{3}}{2}$×30=445π.
故答案為:445π.
點評 本題考查了正弦函數(shù)的圖象與性質,函數(shù)對稱性的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $4\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 1+i | C. | -1+i | D. | 1-i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $-\frac{8}{3}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $-\frac{π}{12}$ | C. | $\frac{π}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com