【題目】如果函數(shù)f(x)是定義在(﹣3,3)上的奇函數(shù),當0<x<3時,函數(shù)f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(

A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)

【答案】B
【解析】解::由圖象可知:0<x<1時,f(x)<0;
當1<x<3時,f(x)>0.
再由f(x)是奇函數(shù),知:
當﹣1<x<0時,f(x)>0;
當﹣3<x<﹣1時,f(x)<0.
又∵余弦函數(shù)y=cosx
當﹣3<x<﹣ ,或 <x<3時,cosx<0
<x< 時,cosx>0
∴當x∈(﹣ ﹣1)∪(0,1)∪( ,3)時,f(x)cosx<0
故選B.
【考點精析】認真審題,首先需要了解函數(shù)奇偶性的性質(在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 上單調遞增,

(1)若函數(shù)有實數(shù)零點,求滿足條件的實數(shù)的集合;

(2)若對于任意的時,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+|x﹣a|+1,x∈R,a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)的最小值為g(a),令m=g(a),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農場預算用5600元購買單價為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍.
(Ⅰ)設買鉀肥x噸,買氮肥y噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(Ⅱ)已知A(10,0),O是坐標原點,P(x,y)在(Ⅰ)中的可行域內,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設f(a1),f(a2),…,f(an)(n∈N+)是首項為4,公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
(Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項和為Sn , 當m= 時,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=loga|x+1|在區(qū)間(﹣2,﹣1)上恒有f(x)>0,則關于a的不等式f(4a﹣1)>f(1)的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四邊形,且AB=1,BC=2,∠ABC=60°,E為BC的中點,AA1⊥平面ABCD. (Ⅰ)證明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,試求二面角E﹣A1C﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有且只有一個零點,求實數(shù)的值;

(2)證明:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)和y=g(x)在[﹣2,2]上的圖象如圖所示.給出下列四個命題:
①方程f[g(x)]=0有且僅有6個根;
②方程g[f(x)]=0有且僅有3個根;
③方程f[f(x)]=0有且僅有5個根;
④方程g[g(x)]=0有且僅有4個根.
其中正確的命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案