【題目】在箱子中有10個小球,其中有3個紅球,3個白球,4個黑球.從這10個球中任取3個.求:
(1)取出的3個球中紅球的個數的分布列;
(2)取出的3個球中紅球個數多于白球個數的概率.
【答案】(1)詳見解析;(2).
【解析】
(1)優(yōu)先表示隨機變量可能的取值,顯然該事件服從超幾何分布,由其概率計算公式分別求得對應概率即可列出分布列;
(2)事件“紅球個數多于白球個數” 可以分解為,“恰好取出個紅球和個黑球”為事件,“恰好取出個紅球”為事件,“恰好取出個紅球”為事件,再由計數原理和古典概型概率公式分別計算概率,最后由相互獨立事件的概率計算方式求得答案.
(1)題意知的所有可能取值為,,,,且服從參數為,, 的超幾何分布,
因此 .
所以 ,
,
,
.
故 的分布列為 :
X | 0 | 1 | 2 | 3 |
P |
(2)設“取出的3個球中紅球個數多于白球個數”為事件,“恰好取出個紅球和個黑球”為事件,“恰好取出個紅球”為事件,“恰好取出個紅球”為事件,
由于事件,,彼此互斥,且,
而,,,
所以取出的3個球中紅球個數多于白球個數的概率為:
.
答:取出的3個球中紅球個數多于白球個數的概率為.
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1,中,點M是棱BC的中點.
(2)求證:A1C∥平面AB1M;
(2)如果AB=AC,求證AM⊥平面BCC1B1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】4支足球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是.單循環(huán)比賽結束,以獲勝的場次數作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結論中正確的是( )
A.恰有四支球隊并列第一名為不可能事件B.有可能出現恰有三支球隊并列第一名
C.恰有兩支球隊并列第一名的概率為D.只有一支球隊名列第一名的概率為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線與二次曲線有4個不同的交點,由下面的草圖可以看出,下面三個結論是成立的,請給出證明.
(1).兩曲線的4個交點中,至少有兩個交點位于軸的下方;
(2).拋物線必與軸有兩個不同的交點,記為,,;
(3).兩曲線的4個交點中,必存在一點,使.
注.對、、的不同取值會有無數個圖形,此處僅就,各給出一個示意圖,同時也就限制“由圖看出”的解答.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.
(1)求橢圓的離心率;
(2)設直線與橢圓交于兩點,若直線與的斜率之和為2,證明:過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢。現統(tǒng)計了連續(xù)5天的售出和收益情況,如下表:
售出水量x(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(單位:元) | 165 | 142 | 148 | 125 | 150 |
(Ⅰ) 若x與y成線性相關,則某天售出8箱水時,預計收益為多少元?
(Ⅱ) 期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學金500元;考入年級201—500 名,獲二等獎學金300元;考入年級501名以后的特困生將不獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為.
⑴在學生甲獲得獎學金條件下,求他獲得一等獎學金的概率;
⑵已知甲、乙兩名學生獲得哪個等第的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X 的分布列及數學期望。
附: , 。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px的焦點為F,準線方程是x=﹣1.
(I)求此拋物線的方程;
(Ⅱ)設點M在此拋物線上,且|MF|=3,若O為坐標原點,求△OFM的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com