精英家教網 > 高中數學 > 題目詳情

【題目】在箱子中有10個小球,其中有3個紅球,3個白球,4個黑球.從這10個球中任取3個.求:

1)取出的3個球中紅球的個數的分布列;

2)取出的3個球中紅球個數多于白球個數的概率.

【答案】1)詳見解析;(2

【解析】

1)優(yōu)先表示隨機變量可能的取值,顯然該事件服從超幾何分布,由其概率計算公式分別求得對應概率即可列出分布列;

2)事件“紅球個數多于白球個數” 可以分解為,“恰好取出個紅球和個黑球”為事件,“恰好取出個紅球”為事件,“恰好取出個紅球”為事件,再由計數原理和古典概型概率公式分別計算概率,最后由相互獨立事件的概率計算方式求得答案.

1)題意知的所有可能取值為,,,且服從參數為, 的超幾何分布,

因此

所以

,

的分布列為

X

0

1

2

3

P

2)設“取出的3個球中紅球個數多于白球個數”為事件,“恰好取出個紅球和個黑球”為事件,“恰好取出個紅球”為事件,“恰好取出個紅球”為事件,

由于事件,彼此互斥,且

,,,

所以取出的3個球中紅球個數多于白球個數的概率為:

答:取出的3個球中紅球個數多于白球個數的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1)求的值;

(2)判斷函數的單調性并證明;

(2)若關于的不等式有解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1,中,點M是棱BC的中點.

2)求證:A1C∥平面AB1M;

2)如果ABAC,求證AM⊥平面BCC1B1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MDNPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】4支足球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是.單循環(huán)比賽結束,以獲勝的場次數作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結論中正確的是(

A.恰有四支球隊并列第一名為不可能事件B.有可能出現恰有三支球隊并列第一名

C.恰有兩支球隊并列第一名的概率為D.只有一支球隊名列第一名的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線與二次曲線4個不同的交點,由下面的草圖可以看出,下面三個結論是成立的,請給出證明.

(1).兩曲線的4個交點中,至少有兩個交點位于軸的下方;

(2).拋物線必與軸有兩個不同的交點,記為,;

(3).兩曲線的4個交點中,必存在一點,使.

.、的不同取值會有無數個圖形,此處僅就,各給出一個示意圖,同時也就限制由圖看出的解答.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.

(1)求橢圓的離心率;

(2)設直線與橢圓交于兩點,若直線的斜率之和為2,證明:過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為倡導全體學生為特困學生捐款,舉行一元錢,一片心,誠信用水活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢。現統(tǒng)計了連續(xù)5天的售出和收益情況,如下表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150

(Ⅰ) 若xy成線性相關,則某天售出8箱水時,預計收益為多少元?

(Ⅱ) 期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學金500元;考入年級201—500 名,獲二等獎學金300元;考入年級501名以后的特困生將不獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為.

⑴在學生甲獲得獎學金條件下,求他獲得一等獎學金的概率;

⑵已知甲、乙兩名學生獲得哪個等第的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X 的分布列及數學期望

附: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線y2=2px的焦點為F,準線方程是x=﹣1

I)求此拋物線的方程;

)設點M在此拋物線上,且|MF|=3,若O為坐標原點,求△OFM的面積.

查看答案和解析>>

同步練習冊答案