精英家教網 > 高中數學 > 題目詳情
6.已知點A(2,1),P是焦點為F的拋物線y2=4x上的任一點,當△PAF的周長最小時,△PAF的面積為( 。
A.2B.$\frac{1}{2}$C.$\frac{7}{8}$D.$\frac{7}{4}$

分析 設點P在準線上的射影為D,則根據拋物線的定義可知|PF|=|PD|進而把問題轉化為求|PA|+|PD|取得最小,推斷出當D,P,A三點共線時|PA|+|PD|最小,求出P的坐標,可得△PAF的面積.

解答 解:設點P在準線上的射影為D,則根據拋物線的定義可知|PF|=|PD|
∴△APF的周長最小,|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
當D,P,A三點共線時|PA|+|PD|最小,設P(x,1),則1=4x,
∴x=$\frac{1}{4}$,
∴P($\frac{1}{4}$,1).
∴△PAF的面積為$\frac{1}{2}×(2-\frac{1}{4})×1$=$\frac{7}{8}$,
故選:C.

點評 本題考查拋物線的定義、標準方程,以及簡單性質的應用,屬于中檔題,正確轉化是關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個焦點F1,F2,過其中兩個端點的直線斜率為$\frac{\sqrt{2}}{2}$,過兩個焦點和一個頂點的三角形面積為1.
(1)求橢圓的方程;
(2)如圖,點A為橢圓上一動點(非長軸端點),AF1的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求△ABC面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.數列{an}中,定義:dn=an+2+an-2an+1(n≥1),a1=1.
(Ⅰ)若dn=an,a2=2,求an;
(Ⅱ) 若a2=-2,dn≥1,求證此數列滿足an≥-5(n∈N*);
(Ⅲ)若|dn|=1,a2=1且數列{an}的周期為4,即an+4=an(n≥1),寫出所有符合條件的{dn}.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.(1)計算2lg5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2的值
(2)計算4${a^{\frac{2}{3}}}$${b^{-\frac{1}{3}}}$÷(-$\frac{2}{3}$${a^{-\frac{2}{3}}}$${b^{-\frac{1}{3}}}$)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.設a為實數,函數f(x)=x2+|x-a|+1(x∈R)
(1)討論f(x)的奇偶性;
(2)當x≤a時,求f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.求圓C1:(x-3)2+y2=4與圓C2:x2+(y+4)2=2的圓心距5.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知sin$\frac{α}{2}$=$\frac{1}{3}$,α∈(0,π),求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.求下列函數的導數:
(1)y=exsinx;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$);
(3)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(4)y=$\frac{1-x}{x}$+lnx.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.如圖所示為函數f(x)=2sin(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的部分圖象,其中A,B兩點之間的距離為5,那么f(-1)=( 。
A.-1B.-$\sqrt{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

同步練習冊答案