分析 (1)先求出函數(shù)的導(dǎo)數(shù),分類討論a的范圍,確定函數(shù)的單調(diào)性,從而求得函數(shù)的極值.
(2)取a=1,由(1)知 f(x)=lnx-$\frac{x-1}{x}$≥0,即 $\frac{1}{x}$≥1-lnx=ln$\frac{e}{x}$,取x=1,2,3…,n,累加可得要征的結(jié)論.
解答 解:(1)由題意可得 f′(x)=$\frac{x-a}{{x}^{2}}$,
∴當(dāng)a>0時(shí),令f′(x)=0,求得x=a,
由ax>0,求得x>0,函數(shù)的定義域?yàn)椋?,+∞),
此時(shí)函數(shù)在(0,a)上,f′(x)<0,f(x)是減函數(shù);在(a,+∞)上,f′(x)>0,f(x)是增函數(shù),
故函數(shù)f(x)的極小值為f(a)=lna2,無最大值.
當(dāng)a<0時(shí),由ax>0,求得x<0,可得函數(shù)f(x)的定義域?yàn)椋?∞,0),
此時(shí)函數(shù)(-∞,a)上,f′(x)=$\frac{x-a}{{x}^{2}}$<0,f(x)是減函數(shù);在(a,0)上,f′(x)>0,f(x)是增函數(shù),
故函數(shù)f(x)的極小值為f(a)=lna2,無最大值.
(2)證明:取a=1,由(1)知 f(x)=lnx-$\frac{x-1}{x}$≥f(1)=0,∴$\frac{1}{x}$≥1-lnx=ln$\frac{e}{x}$,
取x=1,2,3…,n,則 1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$≥ln$\frac{e}{1}$+ln$\frac{e}{2}$+ln$\frac{e}{3}$+…+ln$\frac{e}{n}$=ln$\frac{{e}^{n}}{n!}$,
故要征得不等式1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$≥ln$\frac{{e}^{n}}{n!}$ 成立.
點(diǎn)評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求函數(shù)的極值,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com