【題目】某工廠(chǎng)為生產(chǎn)一種標(biāo)準(zhǔn)長(zhǎng)度為的精密器件,研發(fā)了一臺(tái)生產(chǎn)該精密器件的車(chē)床,該精密器件的實(shí)際長(zhǎng)度為,“長(zhǎng)度誤差”為,只要“長(zhǎng)度誤差”不超過(guò)就認(rèn)為合格.已知這臺(tái)車(chē)床分晝、夜兩個(gè)獨(dú)立批次生產(chǎn),每天每批次各生產(chǎn)件.已知每件產(chǎn)品的成本為元,每件合格品的利潤(rùn)為元.在晝、夜兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取件,檢測(cè)其長(zhǎng)度并繪制了如下莖葉圖:

1)分別估計(jì)在晝、夜兩個(gè)批次的產(chǎn)品中隨機(jī)抽取一件產(chǎn)品為合格品的概率;

2)以上述樣本的頻率作為概率,求這臺(tái)車(chē)床一天的總利潤(rùn)的平均值.

【答案】1)晝、夜批次合格品概率估計(jì)值分別為、;(2.

【解析】

1)分別計(jì)算出晝、夜批次個(gè)樣本中合格品的個(gè)數(shù),據(jù)此可求得這兩個(gè)批次中合格品的概率;

2)分別計(jì)算出晝、夜批次件產(chǎn)品的利潤(rùn),相加即可得出結(jié)果.

1)由樣本數(shù)據(jù)可知,在晝批次的個(gè)樣本中有個(gè)不合格品,有個(gè)合格品,合格品的比率為,因此晝批次合格品概率估計(jì)值為.

在夜批次的個(gè)樣本中有個(gè)不合格品,有個(gè)合格品,合格品的比率為,因此夜批次合格品概率估計(jì)值為;

2)晝批次合格品的概率為,不合格品的概率為,所以件產(chǎn)品中合格品的均值為件,不合格品的均值為件,所以利潤(rùn)為(元);

夜批次合格品的概率為,不合格品的概率為,所以件產(chǎn)品中合格品的均值為

件,不合格品的均值為件,所以利潤(rùn)為(元).

故這臺(tái)車(chē)床一天的總利潤(rùn)的平均值為(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形中, , , , 分別為, 的中點(diǎn),以為圓心, 為半徑的圓交,點(diǎn)在弧上運(yùn)動(dòng)(如圖).若,其中, ,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于20191018日至27日在中國(guó)武漢舉行,中國(guó)隊(duì)以1336442銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動(dòng)會(huì)期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動(dòng)場(chǎng)地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場(chǎng)地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿(mǎn)足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為為正三角形,平面平面是線(xiàn)段的中點(diǎn),是線(xiàn)段上的動(dòng)點(diǎn).

1)探究四點(diǎn)共面時(shí),點(diǎn)位置,并證明;

2)當(dāng)四點(diǎn)共面時(shí),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列對(duì)任意都有(其中、是常數(shù)) .

(Ⅰ)當(dāng),時(shí),求

(Ⅱ)當(dāng),時(shí),若,求數(shù)列的通項(xiàng)公式;

(Ⅲ)若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱(chēng)該數(shù)列是“封閉數(shù)列”.當(dāng),時(shí),設(shè)是數(shù)列的前項(xiàng)和,,試問(wèn):是否存在這樣的“封閉數(shù)列”,使得對(duì)任意,都有,且.若存在,求數(shù)列的首項(xiàng)的所有取值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).

1)求證:平面;

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形為直角梯形,,,,,為線(xiàn)段上一點(diǎn),滿(mǎn)足的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.

1)求證:平面平面;

2)能否在線(xiàn)段上找到一點(diǎn)(端點(diǎn)除外)使得直線(xiàn)與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù),為直線(xiàn)的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程,并求時(shí)直線(xiàn)的普通方程;

2)直線(xiàn)和曲線(xiàn)交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案