【題目】已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.

1)求證:平面

2)求平面與平面所成的銳二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)構(gòu)造直線所在平面,由面面平行推證線面平行;

2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.

1)過點點,連接,如下圖所示:

因為平面平面,且交線為,

又四邊形為正方形,故可得,

故可得平面,又平面

故可得.

在三角形中,因為中點,,

故可得//中點;

又因為四邊形為等腰梯形,的中點,

故可得//;

平面,平面,

故面,

又因為平面,

.即證.

2)連接,,作點,

由(1)可知平面,又因為//,故可得平面,

;

又因為//,,故可得

,兩兩垂直,

則分別以,,,,軸建立空間直角坐標系,

,

,,

,,

設(shè)面的法向量為,則,,

,

可取

設(shè)平面的法向量為,則,

,

可取,

可知平面與平面所成的銳二面角的余弦值為

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,的角平分線.

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三(1)班在一次語文測試結(jié)束后,發(fā)現(xiàn)同學們在背誦內(nèi)容方面失分較為嚴重.為了提升背誦效果,班主任倡議大家在早、晚讀時間站起來大聲誦讀,為了解同學們對站起來大聲誦讀的態(tài)度,對全班50名同學進行調(diào)查,將調(diào)查結(jié)果進行整理后制成下表:

考試分數(shù)

頻數(shù)

5

10

15

5

10

5

贊成人數(shù)

4

6

9

3

6

4

1)欲使測試優(yōu)秀率為30%,則優(yōu)秀分數(shù)線應定為多少分?

2)依據(jù)第1問的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來大聲誦讀的態(tài)度與考試成績是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認為贊成與否的態(tài)度與成績是否優(yōu)秀有關(guān)系.

參考公式及數(shù)據(jù):.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為生產(chǎn)一種標準長度為的精密器件,研發(fā)了一臺生產(chǎn)該精密器件的車床,該精密器件的實際長度為,“長度誤差”為,只要“長度誤差”不超過就認為合格.已知這臺車床分晝、夜兩個獨立批次生產(chǎn),每天每批次各生產(chǎn)件.已知每件產(chǎn)品的成本為元,每件合格品的利潤為元.在晝、夜兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取件,檢測其長度并繪制了如下莖葉圖:

1)分別估計在晝、夜兩個批次的產(chǎn)品中隨機抽取一件產(chǎn)品為合格品的概率;

2)以上述樣本的頻率作為概率,求這臺車床一天的總利潤的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動點到兩坐標軸的距離之和等于它到定點的距離,記點的軌跡為.給出下面四個結(jié)論:①曲線關(guān)于原點對稱;②曲線關(guān)于直線對稱;③點在曲線上;④在第一象限內(nèi),曲線軸的非負半軸、軸的非負半軸圍成的封閉圖形的面積小于.其中所有正確結(jié)論的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了迎接2019年的高考,某學校進行了第一次模擬考試,其中五個班的考試成績在500分以上的人數(shù)如下表,為班級,表示500分以上的人數(shù)

1

2

3

4

5

20

25

30

30

25

1)若給出數(shù)據(jù),班級與考試成績500以上的人數(shù),滿足回歸直線方程,求出該回歸直線方程;

2)學校為了更好的提高學生的成績,了解一模的考試成績,從考試成績在500分以上1,3班學生中,利用分層抽樣抽取5人進行調(diào)研,再從選中的5人中,再選3名學生寫出經(jīng)驗介紹文章,則選的三名學生1班一名,32名的概率.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.

(1)求橢圓C的方程;

(2)設(shè)點為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.

1)求橢圓的方程;

2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與拋物線交于兩點,且的面積為16為坐標原點).

1)求的方程;

2)直線經(jīng)過的焦點不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,證明:為定值.

查看答案和解析>>

同步練習冊答案