已知f(x)=(m-2)x2+(m+1)x+3是偶函數(shù),則f(x)的最大值是
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=(m-2)x2+(m+1)x+3是偶函數(shù)知m+1=0;代回求最大值.
解答: 解:∵f(x)=(m-2)x2+(m+1)x+3是偶函數(shù),
∴m+1=0;
故f(x)=-3x2+3;
故f(x)的最大值是3;
故答案為:3.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

列命題:①“?實(shí)數(shù)a,使
a
為正整數(shù)”;②命題“若a>1,則不等式ax2-2ax+a+3>0的解集為R”的否定;③“若a2<b2,則a<b”的逆命題;④函數(shù)f(x)=ex-2,的零點(diǎn)落在區(qū)間(0,1)內(nèi).其中正確的命題個(gè)數(shù)是( 。
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上周期為8的奇函數(shù),在區(qū)間[0,4]上,f(x)=
2x-a,0≤x≤2
bx+16
cx-8
,2<x≤4
,若f(
8
3
)+f(7)=0,則c=( 。
A、1
B、5
C、
16
3
D、
11
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;  
(2)設(shè)函數(shù)f(x)=sinωx-
3
cosωx(ω>0),且f(x)圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-2x2+3x+
1
3
,則與f(x)圖象相切的斜率最小的切線方程為( 。
A、2x-y-3=0
B、x+y-3=0
C、x-y-3=0
D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx的一個(gè)單調(diào)遞調(diào)增區(qū)間是( 。
A、(-
π
6
6
B、(-
6
,
π
6
C、[-
π
2
,
π
2
]
D、(-
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn和通項(xiàng)an滿足2Sn+an=1,數(shù)列{bn}中,b1=1,b2=
1
2
2
bn+1
=
1
bn
+
1
bn+2
(n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}滿足cn=
an
bn
,求證:c1+c2+c3+…+cn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

云南省2014年全省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的平均身高為170.5cm.現(xiàn)從我校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于157.5cm和187.5cm之間,將測(cè)量結(jié)果按如下方式分成6組:第一組[157.5,162.5],第二組[162.5,167.5],…,第6組[182.5,187.5],
圖是按上述分組方法得到的頻率分布直方圖.
(1)試評(píng)估我校高三年級(jí)男生在全省高中男生中的平均身高狀況;
(2)已知我校這50名男生中身高排名(從高到低)在全省前100名有2人,現(xiàn)從身高在182.5cm以上(含182.5cm)的人中任意抽取2人,求該2人中至少有1人身高排名(從高到低)在全省前100名的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f-1(x)是函數(shù)y=x3+a的反函數(shù),且f-1(2)=1,則實(shí)數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案