【題目】已知集合,,.
(1)命題p:“,都有”,若命題p為真命題,求a的值;
(2)若“”是“”的必要條件,求m的取值范圍.
【答案】(1)2或3 (2)或
【解析】
(1)先求出集合A,若p為真命題,則有,方程的根有兩種可能,兩根相同,兩根不同,由此可得a的值;(2)由題知“”能推出“”,從而,集合A已知,則集合C有以下可能:,,或C中只含有一個元素,由此可得m的范圍.
解:(1)由題意得,∵命題p為真命題,
∴.
又∵,
由,可知B有兩種可能,
①若,則,解得;
②若,則,解得.
因此a的值為2或3.
(2)∵“”是“”的必要條件,
∴“”能推出“”,從而,
因此集合C有四種可能:
①,此時解得;
②,此時此時方程組無實數(shù)解,m的值不存在;
③,此時方程組無實數(shù)解,m的值不存在;
④,此時,解得.
綜上可知,m的取值范圍為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓的一個頂點與兩個焦點構(gòu)成的三角形面積為2.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點,且與軸,軸交于兩點.
(i)若,求的值;
(ii)若點的坐標為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, ,,,,,點在上,且,將沿折起,使得平面平面 (如圖), 為中點.
(1)求證: 平面;
(2)在線段上是否存在點,使得平面?若存在,求的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省每年損失耕地20萬畝,每畝耕地價值24000元,為了減小耕地損失,決定按耕地價格的t%征收耕地占用稅,這樣每年的耕地損失可減少t萬畝,為了既減少耕地的損失又保證此項稅收一年不少于9000萬元,t變動的范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當 時,函數(shù) 的圖象與軸交于兩點 ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)性;
(2)當時,若函數(shù)的極值為e,求的值;
(3)當時,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)在上是增函數(shù),且在定義域上是偶函數(shù).
(1)求p的值,并寫出相應(yīng)的函數(shù)的解析式.
(2)對于(1)中求得的函數(shù),設(shè)函數(shù),問是否存在實數(shù),使得在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù)?若存在,請求出q;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com