19.為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的2×2列聯(lián)表:
  做不到“光盤” 能做到“光盤”
 男 45 10
 女 30 15
表:
P(K2≥k)0.100.050.025
k2.7063.8415.024
經(jīng)計算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$參照附表,得到的正確結(jié)論是(  )
A.在犯錯誤的概率不超過5%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯誤的概率不超過2.5%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”

分析 計算K2,參照附表得出正確的結(jié)論.

解答 解:經(jīng)計算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100{×(45×15-30×10)}^{2}}{55×45×75×25}$≈3.030>2.706,
參照附表,得到的正確結(jié)論是有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”.
故選:D.

點評 本題考查了獨立性檢驗的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果P,P2,…Pn是拋物線C=y2=8x上的點,它們的橫坐標(biāo)依次為:x1,x2,…,xn,F(xiàn)是拋物線C的焦點,若x1+x2+…+xn=2017,|P1F|+|P2F|+…+|PnF|=( 。
A.n+2017B.n+4034C.2n+2017D.2n+4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)$\frac{1+i}{i}$的虛部是( 。
A.-iB.1C.-1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.以下程序運行的結(jié)果是( 。
A.$\frac{137}{60}$B.$\frac{133}{60}$C.$\frac{131}{60}$D.$\frac{121}{60}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能是( 。
A.f(x)=$\frac{sin2x}{{x}^{2}}$B.f(x)=$\frac{cos2x}{{x}^{2}}$C.f(x)=$\frac{co{s}^{2}x}{2x}$D.f(x)=$\frac{cos2x}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)1-$\frac{i}{3+i}$等于(  )
A.$\frac{9}{10}$-$\frac{3}{10}$iB.$\frac{1}{10}$+$\frac{3}{10}$iC.$\frac{9}{10}$+$\frac{3}{10}$iD.$\frac{1}{10}$-$\frac{3}{10}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b,c,d是四條不同的直線,且a,b是異面直線,則下面說法正確的是(  )
A.若c,d 與a,b都相交,則c,d是異面直線
B.若c∥a,d∥b,則 c,d 是異面直線
C.若c,d 與 a,b 都異面,則 c,d 是異面直線
D.若c,d 與 a,b 都垂直,則 c∥d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x-lnx,g(x)=$\frac{{e}^{x}-bx-b}{{x}^{2}}$,b∈[0,$\frac{1}{3}$).(其中e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明f(x)+g(x)>1+$\frac{e}{3}$對x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果向量$\overrightarrow{a}$=(-2,m),$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,那么實數(shù)m等于(  )
A.-1B.1C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案