已知甲箱中只放有x個(gè)紅球與y個(gè)白球且,乙箱中只放有2個(gè)紅球、1個(gè)白球與1個(gè)黑球(球除顏色外,無(wú)其它區(qū)別). 若甲箱從中任取2個(gè)球, 從乙箱中任取1個(gè)球.
(Ⅰ)記取出的3個(gè)球的顏色全不相同的概率為P,求當(dāng)P取得最大值時(shí)的值;
(Ⅱ)當(dāng)時(shí),求取出的3個(gè)球中紅球個(gè)數(shù)的期望.
(I) .
(II)紅球個(gè)數(shù)的分布列為
.
解析試題分析:(I)由題意知,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)取得最大值時(shí).
(II)當(dāng)時(shí),即甲箱中有個(gè)紅球與個(gè)白球,所以的所有可能取值為
則,,,
,
所以紅球個(gè)數(shù)的分布列為
于是.
考點(diǎn):本題主要考查獨(dú)立事件的概率計(jì)算,隨機(jī)變量分布列及其數(shù)學(xué)期望,均值定理的應(yīng)用。
點(diǎn)評(píng):典型題,統(tǒng)計(jì)中的抽樣方法,頻率直方圖,概率計(jì)算及分布列問(wèn)題,是高考必考內(nèi)容及題型。獨(dú)立事件的概率的計(jì)算問(wèn)題,關(guān)鍵是明確事件、用好公式。本題綜合性較強(qiáng),特別是與不等式相結(jié)合,有新意。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競(jìng)賽. 該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ||
[70,80) | ||
[80,90) | ||
[90,100) | ||
合 計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車互不影響.假設(shè)李生早上需要先開(kāi)車送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班,
(1)寫出李生可能走的所有路線;(比如DDA表示走D路從甲到丙,再走D路回到甲,然后走A路到達(dá)乙);
(2)假設(shè)從丙地到甲地時(shí)若選擇走道路D會(huì)遇到擁堵,并且從甲地到乙地時(shí)若選擇走道路B也會(huì)遇到擁堵,其它方向均通暢,但李生不知道相關(guān)信息,那么從出發(fā)到回到上班地沒(méi)有遇到過(guò)擁堵的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲、乙、丙三人獨(dú)立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為、、,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為.
(1)求的值.
(2)設(shè)甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其會(huì)考的政治成績(jī)(均為整數(shù))分成六段: ,,…,后得到如下頻率分布直方圖.
(Ⅰ)求圖中的值
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生政治成績(jī)的平均分;
(Ⅲ)用分層抽樣的方法在80分以上(含 80分)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意選取2人,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情
況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)
的.同一條道路去程與回程是否堵車相互獨(dú)立. 假設(shè)李生早上需要先開(kāi)車送小孩去丙地小學(xué),
再返回經(jīng)甲地趕去乙地上班.假設(shè)道路、、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,
道路、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.
(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有八成把握能夠按時(shí)上班?
(3)設(shè)表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從老校區(qū)把教師接到新校區(qū).已知從新校區(qū)到老校區(qū)有兩條公路,汽車走一號(hào)公路堵車的概率為,不堵車的概率為;汽車走二號(hào)公路堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走一號(hào)公路,丙汽車由于其他原因走二號(hào)公路,且三輛車是否堵車相互之間沒(méi)有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求走二號(hào)公路堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在某校高三學(xué)生的數(shù)學(xué)校本課程選課過(guò)程中,規(guī)定每位同學(xué)只能選一個(gè)科目。已知某班第一小組與第二小組各 有六位同學(xué)選擇科目甲或科 目乙,情況如下表:
| 科目甲 | 科目乙 | 總計(jì) |
第一小組 | 1 | 5 | 6 |
第二小組 | 2 | 4 | 6 |
總計(jì) | 3 | 9 | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com