【題目】如圖,在直三棱柱中,,,分別是,的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面.
【答案】(Ⅰ)詳見(jiàn)解析(Ⅱ)詳見(jiàn)解析
【解析】
試題分析:(Ⅰ)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要結(jié)合平幾知識(shí),如三角形中位線性質(zhì),及利用柱體性質(zhì),如上下底面對(duì)應(yīng)邊相互平行(Ⅱ)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而線面垂直的證明,往往需要利用線面垂直判定與性質(zhì)定理進(jìn)行多次轉(zhuǎn)化:由直棱柱性質(zhì)得側(cè)棱垂直于底面:底面,再轉(zhuǎn)化為線線垂直;又根據(jù)線線平行,將線線垂直進(jìn)行轉(zhuǎn)化,再根據(jù)線面垂直判定定理得平面
試題解析:證明:(1)因?yàn)?/span>,分別是,的中點(diǎn),所以, ...........2分
又因?yàn)樵谌庵?/span>中,,所以. ...............4分
又平面,平面,所以∥平面. ...............6分
(2)在直三棱柱中,底面,
又底面,所以. .............8分
又,,所以, ..........10分
又平面,且,所以平面. ...............12分
又平面,所以平面平面. ............14分
(注:第(2)小題也可以用面面垂直的性質(zhì)定理證明平面,類似給分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c.
(1)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比數(shù)列,求cosB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) , , 是非零向量,已知命題p:若 =0, =0,則 =0;命題q:若 ∥ , ∥ ,則 ∥ ,則下列命題中真命題是( )
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;
(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;
(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線C1: 過(guò)點(diǎn)P且離心率為 .
(1)求C1的方程;
(2)若橢圓C2過(guò)點(diǎn)P且與C1有相同的焦點(diǎn),直線l過(guò)C2的右焦點(diǎn)且與C2交于A,B兩點(diǎn),若以線段AB為直徑的圓過(guò)點(diǎn)P,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形是一個(gè)歷史文物展覽廳的俯視圖,點(diǎn)在上,在梯形區(qū)域內(nèi)部展示文物,是玻璃幕墻,游客只能在區(qū)域內(nèi)參觀.在上點(diǎn)處安裝一可旋轉(zhuǎn)的監(jiān)控?cái)z像頭.為監(jiān)控角,其中、在線段(含端點(diǎn))上,且點(diǎn)在點(diǎn)的右下方.經(jīng)測(cè)量得知:米,米,米,.記(弧度),監(jiān)控?cái)z像頭的可視區(qū)域的面積為平方米.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):)
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)共有學(xué)生名,為了解學(xué)生某次月考的情況,抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),繪制出如下尚未完成的頻率分布表:
分組 | 頻數(shù) | 頻率 |
(1)補(bǔ)充完整題中的頻率分布表;
(2)若成績(jī)?cè)?/span>為優(yōu)秀,估計(jì)該校高三年級(jí)學(xué)生在這次月考中,成績(jī)優(yōu)秀的學(xué)生約為多少人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解一片經(jīng)濟(jì)林的生長(zhǎng)情況,隨機(jī)抽測(cè)了其中60株樹(shù)木的底部周長(zhǎng)(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測(cè)的60株樹(shù)木中,有株樹(shù)木的底部周長(zhǎng)小于100cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為實(shí)常數(shù),函數(shù).
(1)若在是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí)函數(shù)有兩個(gè)不同的零點(diǎn),求證:且.(注:為自然對(duì)數(shù)的底數(shù));
(3)證明
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com