【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點在上,在梯形區(qū)域內(nèi)部展示文物,是玻璃幕墻,游客只能在區(qū)域內(nèi)參觀.在上點處安裝一可旋轉(zhuǎn)的監(jiān)控攝像頭.為監(jiān)控角,其中、在線段(含端點)上,且點在點的右下方.經(jīng)測量得知:米,米,米,.記(弧度),監(jiān)控攝像頭的可視區(qū)域的面積為平方米.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):)
(2)求的最小值.
【答案】(1) (2)
【解析】
(1)根據(jù)正弦定理得PM,PN,再根據(jù)三角形面積公式得結(jié)果,根據(jù)實際意義求定義區(qū)間,(2)根據(jù)同角三角函數(shù)關(guān)系化為基本三角函數(shù)形式,再根據(jù)三角函數(shù)性質(zhì)求最值.
(1)方法一:
在中,,米,
,.
由正弦定理得,
所以,
同理在中,.,
由正弦定理得'
所以
所以的面積.
當(dāng)與重合時,;當(dāng)與重合時,,
即,,
所以
綜上可得:
方法二:在中,,米,
,.
由正弦定理可知,,
所以.
在中,由正整定理可知:.
所以
又點到的距離為,
所以的面積=
當(dāng)與重合時,:當(dāng)與重合時,,
即,
所以.
綜上可得:
(2)由(1)得
又
當(dāng),即時,取得最小值為
答:可視區(qū)域面積的最小值為平方米
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關(guān)系式,即.對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(萬元)的比值在區(qū)間內(nèi)時認為該年效益良好.該公司某年投入的宣傳費用(單位:萬元)分別為:、、、、、,試根據(jù)回歸方程估計年銷售量,從這年中任選年,記其中選到效益良好年的數(shù)量為,試求隨機變量的分布列和期望.(其中為自然對數(shù)的底數(shù),)
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國某沙漠,曾被稱為“死亡之!保刂2018年年底該地區(qū)的綠化率只有,計劃從2019年開始使用無人機飛播造林,彈射的種子可以直接打入沙面里頭,實現(xiàn)快速播種,每年原來沙漠面積的將被改為綠洲,但同時原有綠洲面積的還會被沙漠化。設(shè)該地區(qū)的面積為,2018年年底綠洲面積為,經(jīng)過一年綠洲面積為……經(jīng)過年綠洲面積為,
(1)求經(jīng)過年綠洲面積;
(2)截止到哪一年年底,才能使該地區(qū)綠洲面積超過?(取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋?qū)⒑觾砂兜穆愤B接起來,剖面設(shè)計圖紙如下:
其中,點為軸上關(guān)于原點對稱的兩點,曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對應(yīng)函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點,設(shè)計時要求:保持兩曲線在各銜接處()的切線的斜率相等.
(1)求曲線段在圖紙上對應(yīng)函數(shù)的解析式,并寫出定義域;
(2)車輛從經(jīng)倒爬坡,定義車輛上橋過程中某點所需要的爬坡能力為:(該點與橋頂間的水平距離)(設(shè)計圖紙上該點處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:①游客踏乘;②蓄電池動力;③內(nèi)燃機動力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個單位長度表示實際長度米,試問三種類型的觀光車是否都可以順利過橋?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中函數(shù)的圖象在點處的切線平行于軸.
(1)確定與的關(guān)系;
(2)若,試討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的一段圖象過點,如圖所示.
(1)求函數(shù)的表達式;
(2)將函數(shù)的圖象向右平移個單位,得函數(shù)的圖象,求的最大值,并求出此時自變量的集合,并寫出該函數(shù)的增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com