是等差數(shù)列,公差,的前項(xiàng)和,已知.
(1)求數(shù)列的通項(xiàng)公式;
(2)令=,求數(shù)列的前項(xiàng)之和.

(1);(2)   =。

解析試題分析:(1)設(shè)數(shù)列的首項(xiàng)為,公差為,由題意可得

解得                    4
                6
(2)
   
=  
=                     13
考點(diǎn):等差數(shù)列的通項(xiàng)公式、求和公式,裂項(xiàng)相消法。
點(diǎn)評(píng):典型題,涉及求數(shù)列的通項(xiàng)公式問(wèn)題,一般地通過(guò)布列方程組,求相關(guān)元素。“分組求和法”“裂項(xiàng)相消法”“錯(cuò)位相減法”是高考?贾R(shí)內(nèi)容。本題難度不大。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和為,數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,n≥2時(shí),求通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),數(shù)列滿足
(1)求;
(2)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且對(duì)任意的都有 ,
(Ⅰ)求數(shù)列的前三項(xiàng);
(Ⅱ)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,滿足
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,滿足:
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無(wú)數(shù)次,求首項(xiàng)應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三次函數(shù)為奇函數(shù),且在點(diǎn)的切線方程為
(1)求函數(shù)的表達(dá)式;
(2)已知數(shù)列的各項(xiàng)都是正數(shù),且對(duì)于,都有,求數(shù)列的首項(xiàng)和通項(xiàng)公式;
(3)在(2)的條件下,若數(shù)列滿足,求數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察下列三角形數(shù)表

記第行的第m個(gè)數(shù)為 
(Ⅰ)分別寫(xiě)出,值的大。
(Ⅱ)歸納出的關(guān)系式,并求出關(guān)于n的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案