3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},則集合A∩B=( 。
A.{8,10}B.{8,12}C.{8,14}D.{8,10,14}

分析 用列舉法寫出集合A,根據(jù)交集的定義寫出A∩B.

解答 解:集合A={x|x=3n+2,n∈N}={2,5,8,11,14,…},
B={6,8,10,12,14},
則集合A∩B={8,14}.
故選:C.

點評 本題考查了交集的定義與應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}&{\;}\\{2x+y-6≤0}&{\;}\\{0≤y≤3}&{\;}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點M是圓心為E的圓(x+$\sqrt{3}$)2+y2=16上的動點,點F($\sqrt{3}$,0),線段MF的垂直平分線交EM于點P.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過原點O作直線l交(Ⅰ)中的軌跡C于點A,B,點D滿足$\overrightarrow{FD}$=$\overrightarrow{FA}$+$\overrightarrow{FB}$,試求四邊形AFBD的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知點F1,F(xiàn)2分別是雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右兩焦點,過點F1的直線l與雙曲線的左右兩支分別交于P,Q兩點,若△PQF2是以∠PQF2為頂角的等腰三角形,其中$∠PQ{F_2}∈[\frac{π}{3},π)$,則雙曲線離心率e
的取值范圍為( 。
A.$[\sqrt{7},3)$B.$[1,\sqrt{7})$C.$[\sqrt{5},3)$D.$[\sqrt{5},\sqrt{7})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,則z=x+3y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{a}^{x}}{x}$-lna,(a>0,且a≠1).
(Ⅰ)若a=e,求函數(shù)y=f(x)的單調區(qū)間;(其中e=2.71828…是自然對數(shù)的底數(shù))
(Ⅱ)設函數(shù)$g(x)=\frac{e+1}{ex}$,當x∈[-1,0)∪(0,1]時,曲線y=f(x)與y=g(x)有兩個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如果a=log41,b=log23,c=log2π,那么三個數(shù)的大小關系是(  )
A.c>b>aB.a>c>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)ax2e-x(a≠0)
(Ⅰ)若直線y=e-1x為曲線y=f(x)的切線,求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)設函數(shù)g(x)=$\frac{1}{2}$(x-$\frac{1}{x}$+f(x))-$\frac{1}{2}$|x-$\frac{1}{x}$-f(x)|-cx2(x>0),在(Ⅰ)的條件下,若函數(shù)g(x)為增函數(shù),求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習冊答案