1.“x≠1或y≠3”是“x+y≠4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 可考慮肯定敘述,x+y=4是x=1且y=3的什么條件.由充分必要條件的定義,可得得到結(jié)論.

解答 解:考慮x+y=4是x=1且y=3的什么條件.
顯然x=1且y=3,可推得x+y=4,
但x+y=4推不到x=1且y=3,比如x=y=2,
則x+y=4是x=1且y=3的必要不充分條件.
即有“x≠1或y≠3”是“x+y≠4”的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查充分必要條件的判斷,注意轉(zhuǎn)化思想的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=|2x-m|(m為常數(shù)),對(duì)任意x∈R,均有f(x+3)=f(-x)恒成立.有下列說(shuō)法:
①f(x)是以3為周期的函數(shù);
②若g(x)=f(x)+|2x-b|(b為常數(shù))的圖象關(guān)于直線x=1對(duì)稱,則b=1;
③若0<2α<β+2且f(α)=f(β+3),則必有-$\frac{1}{12}$≤3α2+β<$\frac{2}{3}$;
④已知定義在R上的函數(shù)F(x)對(duì)任意x均有F(x)=F(-x)成立,且當(dāng)x∈[0,3]時(shí),F(xiàn)(x)=f(x),又函數(shù)h(x)=-x2+c(c為常數(shù)),若存在x1、x2∈[-1,3]使得|F(x1)-h(x2)|<1成立,則c的取值范圍是(-1,13)
其中說(shuō)法正確的有②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.求過(guò)點(diǎn)A(2,-1),圓心在直線y=-2x上,且與直線x+y-1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.給出An=2n,Bn=n2+1,n∈N+,現(xiàn)比較二者的大。
(1)分別取n=1,2,3,4,5加以試驗(yàn),
(2)①根據(jù)試驗(yàn)結(jié)果猜測(cè)一個(gè)一般性的結(jié)論;
②用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{2}{7}$.
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
合計(jì)
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
P(K2≥x00.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.0763.8415.0246.6357.87910.828
參考公式及數(shù)據(jù):K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=$\frac{{{{(x-2)}^0}}}{{\sqrt{-{x^2}+4x-3}}}$的定義域是(1,2)∪(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+alnx.
(Ⅰ)當(dāng)a=-2e時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若函數(shù)f(x)在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和是Sn,Sn=2an-1且n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2(Sn+1)(n∈N*),令Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.兩等差數(shù)列{an}、{bn}的前n項(xiàng)和的比$\frac{S_n}{T_n}$=$\frac{7n+1}{4n+2}$,則$\frac{{{a_{11}}}}{{{b_{11}}}}$的值是( 。
A.$\frac{43}{74}$B.$\frac{74}{43}$C.$\frac{39}{23}$D.$\frac{23}{39}$

查看答案和解析>>

同步練習(xí)冊(cè)答案