【題目】五一期間,為了滿足廣大人民的消費(fèi)需求,某共享單車公司欲投放一批共享單車,單車總數(shù)不超過100輛,現(xiàn)有A,B兩種型號(hào)的單車:其中A型車為運(yùn)動(dòng)型,成本為400輛,騎行半小時(shí)需花費(fèi)元;B型車為輕便型,成本為2400輛,騎行半小時(shí)需花費(fèi)1若公司投入成本資金不能超過8萬元,且投入的車輛平均每車每天會(huì)被騎行2次,每次不超過半小時(shí)不足半小時(shí)按半小時(shí)計(jì)算,問公司如何投放兩種型號(hào)的單車才能使每天獲得的總收入最多,最多為多少元?

【答案】公司投放兩種型號(hào)的單車分別為8020輛才能使每天獲得的總收入最多,最多為120元.

【解析】

根據(jù)題意,設(shè)投放A型號(hào)單車x輛,B型號(hào)單車y輛,單車公司可獲得的總收入為Z,可得到約束條件的式子,及目標(biāo)函數(shù),畫出不等式組表示的平面區(qū)域,當(dāng)目標(biāo)函數(shù),經(jīng)過點(diǎn)時(shí),取得最大值,求解即可。

解:根據(jù)題意,設(shè)投放A型號(hào)單車x輛,B型號(hào)單車y輛,單車公司每天可獲得的總收入為Z,

則有,

,

畫出不等式組表示的平面區(qū)域,由,解得.

當(dāng)目標(biāo)函數(shù),經(jīng)過點(diǎn)時(shí),取得最大值為:.

答:公司投放兩種型號(hào)的單車分別為8020輛才能使每天獲得的總收入最多,最多為120元。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)12,3,n排成數(shù)表如表所示,即第一行3個(gè)數(shù),第二行6個(gè)數(shù),且后一行比前一行多3個(gè)數(shù),若第i行,第j列的數(shù)可用表示,則100可表示為______

1

2

3

4

5

6

7

8

1

1

2

3

2

9

8

7

6

5

4

3

10/p>

11

12

13

14

15

16

17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,是正三角形,四邊形是菱形,點(diǎn)的中點(diǎn).

(I)求證:// 平面;

(II)若平面平面,, 求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于直線和點(diǎn)、,記,若,則稱點(diǎn),被直線l分隔,若曲線C與直線l沒有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱直線l為曲線C的一條分隔線.

1)求證:點(diǎn)被直線分隔;

2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;

3)動(dòng)點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為,過點(diǎn)的直線,兩點(diǎn),的周長為的離心率

(Ⅰ)求的方程;

(Ⅱ)設(shè)點(diǎn),,過點(diǎn)軸的垂線,試判斷直線與直線的交點(diǎn)是否恒在一條定直線上?若是,求該定直線的方程;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

)求函數(shù)的極值;

)當(dāng)時(shí),證明:對一切的,都有恒成立;

)當(dāng)時(shí),函數(shù),有最小值,記的最小值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若曲線上始終存在兩點(diǎn),使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過點(diǎn)P(1,),直線l的方程為x=4.

(1)求橢圓的方程;

(2)已知橢圓內(nèi)一點(diǎn)E(1,0),過點(diǎn)E作一條斜率為k的直線與橢圓交于A,B兩點(diǎn),交直線l于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù),使得k1+k2k3?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx=ax+1﹣alnx+a∈R

)當(dāng)a=0時(shí),求 fx)的極值;

)當(dāng)a0時(shí),求 fx)的單調(diào)區(qū)間;

)方程 fx=0的根的個(gè)數(shù)能否達(dá)到3,若能請求出此時(shí)a的范圍,若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案