【題目】已知函數(shù),.

1)求證:在區(qū)間上有且僅有一個零點,且;

2)若當時,不等式恒成立,求證:.

【答案】1)詳見解析;(2)詳見解析.

【解析】

1)利用求導數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;

(2)當時,不等式恒成立,分離參數(shù)只需時,恒成立,

設(shè)),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導數(shù)法,證明即可.

1,

,則,

所以在區(qū)間上是增函數(shù),

,所以在區(qū)間上是增函數(shù).

又因為

,

所以在區(qū)間上有且僅有一個零點,且.

2)由題意,在區(qū)間上恒成立,

在區(qū)間上恒成立,

時,

時,恒成立,

設(shè)),

所以.

由(1)可知,,使

所以,當時,,當時,,

由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以.

又因為

所以,從而

所以.,

,

所以在區(qū)間上是增函數(shù),

所以,故.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,的中點.

1)證明:;

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若在區(qū)間上有最小值,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),其中a為常數(shù).

,求a的值;

時,關(guān)于x的不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的二次函數(shù),且上的最小值是8.

1)求實數(shù)的值;

2)設(shè)函數(shù),若方程上的兩個不等實根為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

)設(shè)是函數(shù)的導函數(shù),求函數(shù)在區(qū)間上的最小值;

)若,函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是(

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別無關(guān)

C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面是棱上的一點,滿足平面.

(Ⅰ)證明:;

(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢驗學習情況,某培訓機構(gòu)于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學員”.

(1)分別求甲、乙兩班學員成績的平均分(結(jié)果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

同步練習冊答案