7.已知函數(shù)f(x)在R上是單調(diào)函數(shù),且滿足對(duì)任意x∈R,都有f[f(x)-3x]=4,則f(2)的值是( 。
A.4B.8C.10D.12

分析 由已知可得f(x)-3x為一常數(shù),進(jìn)而可得函數(shù)的解析式,將x=2代入可得答案.

解答 解:∵對(duì)任意x∈R,都有f[f(x)-3x]=4,且函數(shù)f(x)在R上是單調(diào)函數(shù),
故f(x)-3x=k,
即f(x)=3x+k,
∴f(k)=3k+k=4,
解得:k=1,
故f(x)=3x+1,
∴f(2)=10,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)解析式的求法,函數(shù)求值,其中根據(jù)已知得到函數(shù)的解析式,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=x2+x+a在區(qū)間(0,1)上有零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.$(-∞,\frac{1}{4}]$B.$(-∞,\frac{1}{4})$C.(-2,0)D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)y=f(x)在R上為奇函數(shù),當(dāng)x>0時(shí),f(x)=3x2-9,則f(-2)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,點(diǎn)P在拋物線上,且|PM|=$\sqrt{2}$|PF|,則△PMF的面積為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知A={y|2<y<3},B={x|($\frac{1}{2}$)${\;}^{{x}^{2}-2x-3}$<22(x+1)}.
(1)求A∩B;   
(2)求C={x|x∈B且x∉A}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)f(x)的圖象在區(qū)間[a,b]上不間斷,且f(a)f(b)<0,用二分法求相應(yīng)方程的根時(shí),若f(a)<0,f(b)>0,f($\frac{a+b}{2}$)>0,則取有根的區(qū)間為$(a,\frac{a+b}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M真子集的個(gè)數(shù)為( 。
A.32B.31C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(0,-2),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m等于( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.小張打算在2001年初向建行貸款50萬(wàn)元先購(gòu)房,銀行貸款的年利率為4%,按復(fù)利計(jì)算,要求從貸款開始到2010年要分10年還清,每年年底等額歸還且每年1次,每年至少要還多少錢呢(保留兩位小數(shù))?(提示:(1+4%)10≈1.48)

查看答案和解析>>

同步練習(xí)冊(cè)答案